AFM
Contents |
Composición del AFM
Aquí se describen los materiales principales que componen este AFM home-made, junto con su función.
Punta
Esta herramienta es la que permite el scanner de la superficie a estudiar. Funciona gracias a su deflección, o sea, su doblamiento hacia la muestra estudiada, y según la fuerza existente entre la punta y la muestra, es el sistema de scanner de ella:
- Modo de contacto: Es el que se utiliza en nuestro AFM, y tanto la deflección de la punta como la fuerza de interacción entre la punta y la muestra son constantes.
- Modo de no contacto: La punta no toca la muestra, y oscila con una frecuencia levemente cercana a la de resonancia de la punta. Su amplitud de oscilación varía entre 1 y 10 nm, siendo, por ello, las fuerzas de Van Der Waals las responsables de su oscilación.
- Modo de contacto intermedio: La punta toca la muestra intermitentemente, con una frecuencia cerca de la de resonancia de la punta, pero con una amplitud entre 100 y 200 nm, un orden de magnitud mayor que del modo de no contacto. Las fuerzas asociadas pueden ser tanto de Van Der Waals, electrostática y otras.
Curiosamente, en este AFM se utiliza el modelo de punta PPP-NCL, que es para modo de no contacto. Aquello se explica simplemente por la eficiencia de funcionamiento de este tipo de puntas, en comparación a las puntas de contacto utilizadas. Las especificaciones se indican a continuación:
- Material: Silicio
- Dimensiones (espesor x longitud x ancho):
- Frecuencia de Resonancia: 190 KHz
- Constante de Fuerza: 48 N/m
Cantilever
Es una estructura flexible que se dobla según las fuerzas que existan entre la punta y la muestra, descritas anteriormente. Para este AFM, el cantilever es de silicio, al igual que la punta, aunque ambas unidades no están incorporadas una a la otra, por lo que la punta se une al cantilever con esmalte transparente. Ahora bien, la deflexión del cantilever, para este AFM se detecta apuntando un láser rojo de hacia la punta, ya que esta deflexión es directamente proporcional a la variación del ángulo de reflexión del láser. Y para detectar estas variaciones, se utiliza un sistema de fotodiodos de cuatro cuadrantes.
Sistema de Detección de Cuatro Cuadrantes
Un fotodiodo es un fotodetector que convierte luz incidente en corriente o voltaje de salida. Para este caso, la intensidad de luz reflejada por la punta y detectada por este elemento se observa como voltaje de salida. Ahora, ya que un AFM analiza superficies, la deflexión también se presenta en dos ejes, lo que se soluciona con el sistema de cuatro cuadrantes, siendo cada uno de ellos un fotodiodo. Con ello, respecto a un centro de referencia fijado para cada medición, la deflexión, horizontal o vertical, se detecta en base a la variación de la luz incidente en cada fotodiodo.
Con ello, para cada medición, una vez dispuesta la muestra, se debe ajustar la dirección del láser tal que incida exactamente en la punta utilizada.
Sistema de Control
Circuitos de retroalimentación
Aqui se va explicar qué es un circuito de retroalimentación, cómo una parte del output va al input con el propósito de que el sistema se controle a sí mísmo. Retroalimentación negativa, positiva y bipolar.
Controladores PID y PI
En qué consiste un tipico controlador PID, qué significa cada parámetro (P, I, D) y de dónde vienen. Por qué en la práctica se usan más los PI, y en particular en nuestro AFM.
Ajuste de P-gain e I-gain
Cuál es el impacto de variar los parámetros P e I en el AFM, dónde y cómo se varían.
Diagrama del sistema de control del AFM
Diagrama con las conexiones necesarias: canales X, Y, Z, scanner, error, sistema de adquisión (PC).
Lock-In
El amplificador Lock-In, o detector phase-sensitive como se conoce, es fundamental para el funcionamiento de los distintos tipos de microscopios de sondeo de superficies, en especial en los modos dinámicos del AFM. Este determina la frecuencia de oscilación de la punta de sondeo.
Descripción del Aparato
Un amplificador Lock-In es un tipo de aparato electrónico que puede extraer una señal de un cierto tipo de onda portadora conocida de un ambiente extremadamente "ruidoso" (La razón S/N, Signal to Noise, puede ser -60 dB o aun menor). Este aparato ocupa esencialmente el método de detección homodyne con un filtro low-pass extremadamente bajo. Los aparatos Lock-In tambien pueden, a traves de un mezclador de frecuencias, mezclar ondas, es decir entrega una señal que es el producto de una de entrada y otra generada localmente por el Lock-In. Esta mezcla se ocupa para transformar la fase y la amplitud de la señal a DC.
El amplificador Lock-In fue desarrolado e inventado por Robert H. Dicke de la Universidad de Princeton, quien fundo la compañia de Investigacion Aplicada de Princeton (PAR).
Teoria de su funcionamiento
El Lock-In funciona ocupando un principio basico de las ondas electromagneticas, la ortogonalidadde las funciones sinusoidales.