AFM

From Uv
Revision as of 11:01, 3 December 2010 by Rportega (Talk | contribs)

Jump to: navigation, search

Contents

Composición del AFM

Aquí se describen los materiales principales que componen este AFM home-made, junto con su función.

Punta

Esta herramienta es la que permite el scanner de la superficie a estudiar. Funciona gracias a su deflección, o sea, su doblamiento hacia la muestra estudiada, y según la fuerza existente entre la punta y la muestra, es el sistema de scanner de ella:

- Modo de contacto: Es el que se utiliza en nuestro AFM, y tanto la deflección de la punta como la fuerza de interacción entre la punta y la muestra son constantes.

- Modo de no contacto: La punta no toca la muestra, y oscila con una frecuencia levemente cercana a la de resonancia de la punta. Su amplitud de oscilación varía entre 1 y 10 nm, siendo, por ello, las fuerzas de Van Der Waals las responsables de su oscilación.

- Modo de contacto intermedio: La punta toca la muestra intermitentemente, con una frecuencia cerca de la de resonancia de la punta, pero con una amplitud entre 100 y 200 nm, un orden de magnitud mayor que del modo de no contacto. Las fuerzas asociadas pueden ser tanto de Van Der Waals, electrostática y otras.

Curiosamente, en este AFM se utiliza el modelo de punta PPP-NCL, que es para modo de no contacto. Aquello se explica simplemente por la eficiencia de funcionamiento de este tipo de puntas, en comparación a las puntas de contacto utilizadas. Las especificaciones se indican a continuación:

- Material: Silicio

- Dimensiones (espesor x longitud x ancho): LaTeX:  7\mu m \times 225 \mu m \times 38 \mu m

- Frecuencia de Resonancia: 190 KHz

- Constante de Fuerza: 48 N/m


Sistema de Control

Circuitos de retroalimentación

Aqui se va explicar qué es un circuito de retroalimentación, cómo una parte del output va al input con el propósito de que el sistema se controle a sí mísmo. Retroalimentación negativa, positiva y bipolar.

Controladores PID y PI

En qué consiste un tipico controlador PID, qué significa cada parámetro (P, I, D) y de dónde vienen. Por qué en la práctica se usan más los PI, y en particular en nuestro AFM.

Ajuste de P-gain e I-gain

Cuál es el impacto de variar los parámetros P e I en el AFM, dónde y cómo se varían.

Diagrama del sistema de control del AFM

Diagrama con las conexiones necesarias: canales X, Y, Z, scanner, error, sistema de adquisión (PC).

Lock-In

El amplificador Lock-In, o rectificador sensible a la fase, es fundamental para el funcionamiento de los distintos tipos de microscopios de sondeo de superficies, en especial en los modos dinámicos del AFM.

Descripción del Aparato

Un amplificador Lock-In es un tipo de aparato electrónico que puede extraer una señal de un cierto tipo de onda, con frecuencia conocida, de un ambiente extremadamente "ruidoso" (La razón S/N, Signal to Noise, puede ser -60 dB o aun menor) mediante la modulación y posterior detección por fase de dicha señal. Este aparato ocupa esencialmente el método de detección homodyne con un filtro pasabajos o low-pass. El funcionamiento del Lock-In se basa en la mezcla de ondas a través de un mezclador de frecuencias, es decir entrega una señal que es el producto de una de entrada y otra generada localmente por el Lock-In. Esta mezcla se ocupa para transformar la fase y la amplitud de la señal de AC a DC. Con todo esto se puede conocer la amplitud de la onda, frecuencia y eventual fase que tiene la señal buscada.

El amplificador Lock-In fue desarrollado e inventado por Robert H. Dicke de la Universidad de Princeton, quien fundo la compañía de Investigación Aplicada de Princeton (PAR).

Teoria acerca su funcionamiento

El Lock-In funciona ocupando un principio básico de las ondas electromagnéticas, la ortogonalidad de las funciones sinusoidales. Para esto el Lock-In genera señales de referencia con la misma frecuencia de la que se quiere encontrar, que toma la siguiente forma:

LaTeX: r(t) = sin( 2\pi f_{0} t )

Por otro lado, la señal que ingresa al Lock-In esta formada por una onda que tiene la misma frecuencia que la señal de referencia, con su respectiva amplitud y fase, mas una componente que corresponde a todo el ruido externo.

LaTeX: e(t) = A sin ( 2\pi f_{0} t + \theta ) + n(t)

El Lock-In amplifica y digitaliza esta señal, para luego realizar el producto con la componente en fase y en cuadratura (desplazada 90 grados) de la referencia.

LaTeX: p_{f}(t) = r(t) \times e_{f}(t) = \frac{1}{2} A cos(\theta) - \frac{1}{2} A cos(4\pi f_{0} t + \theta) + n_{f}(\theta)


ñ

Artefactos o Problemas en la Imagen

Piezoeléctricos

Modos de Escanéo

Ventajas y Desventajas

Referencias

Características de la punta PPP-NCL

Funcionamiento del Lock-In

Personal tools