Errores e Instrumentación
(→Midiendo Tiempo) |
(→Errores) |
||
(2 intermediate revisions by one user not shown) | |||
Line 25: | Line 25: | ||
Dada la incertidumbre inherente a toda medición, existe siempre un error asociado a ellas. Por lo tanto, en el contexto de un experimento no sólo es importante que obtengamos un resultado para una determinada medición, sino que también debemos especificar cuál es el error correspondiente. Este último usualmente lo escribimos usando el símbolo ± que nos dice en qué intervalo es probable que se encuentre el resultado promedio. La inhabilidad de hacer un análisis de error adecuado puede llevarnos a sacar conclusiones completamente erradas a partir de nuestros resultados. |
Dada la incertidumbre inherente a toda medición, existe siempre un error asociado a ellas. Por lo tanto, en el contexto de un experimento no sólo es importante que obtengamos un resultado para una determinada medición, sino que también debemos especificar cuál es el error correspondiente. Este último usualmente lo escribimos usando el símbolo ± que nos dice en qué intervalo es probable que se encuentre el resultado promedio. La inhabilidad de hacer un análisis de error adecuado puede llevarnos a sacar conclusiones completamente erradas a partir de nuestros resultados. |
||
− | [http://fisica.uc.cl/images/Análisis_de_Errores.pdf Una guía de análisis de errores puede ser encontrada aquí]. |
+ | [http://srv2.fis.puc.cl/mediawiki/images/8/82/Análisis_de_Errores.pdf Una guía de análisis de errores puede ser encontrada aquí]. |
== Materiales == |
== Materiales == |
||
Line 65: | Line 65: | ||
: 1. Construyan un péndulo utilizando una golilla, hilo y un pedestal. |
: 1. Construyan un péndulo utilizando una golilla, hilo y un pedestal. |
||
: 2. Midan su período de oscilación 10 veces utilizando un cronómetro y calculen el valor promedio y la desviación estándar. Utilicen un ángulo inicial de amplitud de oscilación pequeña, de alrededor de 15º. |
: 2. Midan su período de oscilación 10 veces utilizando un cronómetro y calculen el valor promedio y la desviación estándar. Utilicen un ángulo inicial de amplitud de oscilación pequeña, de alrededor de 15º. |
||
− | : 3. Estimen el período de oscilación (<m>T</m>) de un péndulo de largo (<math>l</math>) a partir de la expresión: <center><math>T=2\Pi\sqrt{\frac{l}{g}}</math></center>, con <math>g=9,8\frac{m}{s^2}</math> |
+ | : 3. Estimen el período de oscilación (<m>T</m>) de un péndulo de largo (<m>l</m>) a partir de la expresión: <center><m>T=2\Pi\sqrt{\frac{l}{g}}</m></center>, con <m>g=9,8\frac{m}{s^2}</m> |
: 4. Compare el valor calculado (teórico) y el valor promedio medido (experimental). |
: 4. Compare el valor calculado (teórico) y el valor promedio medido (experimental). |
||
: 5. ¿Cuál es el porcentaje de error de exactitud entre el valor teórico y experimental? |
: 5. ¿Cuál es el porcentaje de error de exactitud entre el valor teórico y experimental? |
Latest revision as of 09:13, 12 August 2016
Contents |
[edit] Introducción
El presente experimento trata sobre la cuantificación de magnitudes físicas. Como ejemplo, tres magnitudes fundamentales serán cuantificadas: longitud, masa y tiempo. Mediante la utilización de diversos instrumentos de medida se analizarán experimentalmente los errores asociados a la cuantificación de cada una de ellas.
[edit] Objetivos Específicos
- 1. Aplicar el concepto de medida de una magnitud física, considerando la incertidumbre de su valor.
- 2. Analizar las fuentes de errores sistemáticos y aleatorios.
- 3. Analizar las ventajas, desventajas y alcances de distintos instrumentos de medida.
[edit] Bitácora de Laboratorio
Una bitácora es sin duda algo esencial para el trabajo científico y uno de los objetivos principales de este curso es crear el hábito de su uso. Ella debe contener en detalle todos los procedimientos, resultados y conclusiones preliminares de los experimentos. Debe incluir fecha, títulos, subtítulos, cálculos, estimaciones, gráficos, y en general, todos los datos que les permitan reproducir los experimentos y sus resultados. Ella debe utilizarse también como un libro de consultas cada vez que existan dudas sobre alguna medida o condiciones específicas de un experimento. El hábito de escribir en un cuaderno les servirá también para ordenar, clarificar y llevar a cabo sus ideas.
Más información sobre como llevar una bitácora puede ser encontrado aquí
[edit] Informe de Laboratorio
Una vez finalizado el experimento y obtenidos sus resultados, el ciclo de la producción científica no está completo. Sin duda una de las partes más importantes es la comunicación de aquellas conclusiones, inventos o descubrimientos más relevantes. Para ello existe un formato universal de comunicación científica que permite validar tanto el experimento como sus resultados y análisis. Es de extremada importancia conocer esta estructura literaria que permitirá darle sentido a cada una de las partes del trabajo científico.
Un ejemplo de informe de laboratorio puede ser encontrado aquí.
[edit] Errores
Dada la incertidumbre inherente a toda medición, existe siempre un error asociado a ellas. Por lo tanto, en el contexto de un experimento no sólo es importante que obtengamos un resultado para una determinada medición, sino que también debemos especificar cuál es el error correspondiente. Este último usualmente lo escribimos usando el símbolo ± que nos dice en qué intervalo es probable que se encuentre el resultado promedio. La inhabilidad de hacer un análisis de error adecuado puede llevarnos a sacar conclusiones completamente erradas a partir de nuestros resultados.
Una guía de análisis de errores puede ser encontrada aquí.
[edit] Materiales
- -Regla
- -Pie de metro
- -Huincha de medir
- -Micrómetro
- -Balanza
- -Golillas
- -Cronómetro
- -Soporte Universal
- -Hilo
[edit] Procedimiento
[edit] Midiendo Longitud
- 1. Midan el diámetro interior de 10 golillas utilizando una regla o huincha de medir y un pie de metro o micrómetro.
- 2. Calculen un valor promedio, la desviación estándar y el error estándar de la medida del diámetro interior de las golillas.
- 3. ¿Cuál es la precisión de medida de cada instrumento?
- 4. ¿Qué concluyen al comparar la precisión de medida de cada instrumento con la desviación estándar?
- 5. ¿Qué concluyen al comparar la precisión de medida de cada instrumento con el error estándar?
- 6. Enumeren al menos tres ventajas y desventajas de cada instrumento utilizado.
[edit] Midiendo Masa
- 1. Utilicen una balanza electrónica para medir la masa de 10 golillas, una a una.
- 2. Calculen un valor promedio de la masa de una golilla y su desviación estándar.
- 3. Calculen el error estándar utilizando 2, 10 y 20 medidas.
- 4. Midan la masa de 20 golillas, todas juntas, y calculen el valor de la masa por golilla.
- 5 ¿Cuál es la precisión de medida del instrumento?
- 6. ¿Los valores de la masa por golilla obtenidos en 2 y 4 difieren más o menos que la desviación estándar calculada en 2?
- 7. ¿Cuáles son las fuentes de errores aleatorios? ¿Cuáles son las fuentes de errores sistemáticos?
[edit] Midiendo Tiempo
- 1. Construyan un péndulo utilizando una golilla, hilo y un pedestal.
- 2. Midan su período de oscilación 10 veces utilizando un cronómetro y calculen el valor promedio y la desviación estándar. Utilicen un ángulo inicial de amplitud de oscilación pequeña, de alrededor de 15º.
- 3. Estimen el período de oscilación () de un péndulo de largo () a partir de la expresión:
, con - 4. Compare el valor calculado (teórico) y el valor promedio medido (experimental).
- 5. ¿Cuál es el porcentaje de error de exactitud entre el valor teórico y experimental?
- 6. ¿Cómo se podría mejorar la medida de la oscilación del péndulo?