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By disentangling the hamiltonian constraint equations, 2 + 1 dimensional gravity (with or 
without a cosmological constant) is shown to be exactly soluble at the classical and quantum 
levels. Indeed, it is closely related to Yang-Mills theory with purely the Chern-Simons action, 
which recently has turned out to define a soluble quantum field theory. 2 + 1 dimensional gravity 
has a straightforward renormalizable perturbation expansion, with vanishing beta function. 2 + 1 
dimensional quantum gravity may provide a testing ground for understanding the role of classical 
singularities in quantum mechanics, may be related to the discrete series of Virasoro representa- 
tions in 1 + 1 dimensions, and may be a useful tool in studying three-dimensional geometry. 

1. Introduction 

There  are  two bits  of s t andard  folklore about  general  relat ivi ty in 2 + 1 d imen-  

s ions*.  One  piece of folklore holds that  this system is " t r iv ia l " ,  on the grounds  that  

there  are  no  gravi ta t ional  waves in this low dimension.  ( "Non t r i v i a l i t y "  can be 

achieved b y  inc luding  mat ter  fields, bu t  we will not  do  that  in this paper . )  The o ther  

b i t  of  fo lklore  holds  that  general  relat ivi ty is inconsis tent  in 2 + 1 dimensions ,  since 

i t  is supposed ly  unrenormal izable .  

Clear ly,  there  is a certain amoun t  of tension be tween these two pieces of folklore.  

I t  is surpr is ing  to be told that  a " t r iv ia l "  system suffers f rom in t rac tab le  infinities.  

Ac tua l ly ,  if we p robe  a tittle bi t  deeper,  there is a very defini te  con t rad ic t ion  

be tween  the c la im that  general  relat ivi ty is trivial  in 2 + 1 d imensions  and the claim 

tha t  it  is unrenormal izable .  The  cont rad ic t ion  appears  if we con templa te  the 

m ean ing  of  "quan t i za t ion" .  W h a t  it  means  to quant ize  a theory is to const ruct  the 

c lass ical  phase  space, define Poisson brackets  on this space, and  then in terpre t  the 

func t ions  on  phase  space as quan tum mechanica l  opera tors .  W h e n  one says that  

genera l  re la t iv i ty  is " t r iv ia l "  in 2 + 1 d imensions  one means  that  the classical phase  

spaces  tha t  ar ise with reasonable  b o u n d a r y  condi t ions  are finite d imens iona l  (as 

o p p o s e d  to inf in i te -d imens ional  phase  spaces which are said to be "non- t r iv ia l " ) .  
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We cannot possibly run into problems of unrenormalizability in trying to quantize a 
finite-dimensional phase space. Depending on its topology, a finite-dimensional 
phase space might be unquantizable, but this is not the kind of problem that is 
envisaged by the bit of folklore which says that 2 + 1 dimensional gravity does not 
make sense. 

To make these considerations a little bit more precise, let us analyze the possible 
phase spaces (depending on boundary conditions) in 2 + 1 dimensional gravity. 
First of all, what is "classical phase space"? Phase space is often defined as the 
space of all values of qi and (li (the positions and momenta) at time zero, subject to 
possible constraint equations in the case of a gauge theory. This definition is not 
manifestly covariant and may, in general, lead to a lengthy analysis of constraint 
e q u a t i o n s -  though in sect. 2 we will see that the constraints can be neatly 
untangled in the case of 2 + 1 dimensional gravity. There is another definition of 
classical phase space that is manifestly covariant: classical phase space is the space 
of all solutions of the classical equations, modulo gauge transformations. In fact the 
role of specifying the coordinates and momenta at time zero is precisely that these 
initial conditions determine a classical so lu t ion-  provided that the appropriate 
constraint equations are obeyed and modulo gauge transformations. Let us apply 
the principle that "phase space is the space of classical solutions"* to 2 + 1 
dimensional gravity. The field equations (in the absence of a cosmological constant) 
assert the vanishing of the Ricci tensor, Rij = 0, and in 2 + 1 dimensions this 
implies that space-time is flat. Thus, we are interested in flat space-times. To fix 
ideas, we further suppose that "space" is a Riemann surface 2~, of genus g; then 
"space-t ime" will be M = 2f × R 1, where R 1 represents "t ime".  We will look for flat 
metrics on M, but not necessarily for complete metrics. Part of the interest of the 
problem is precisely that the space-times that will arise upon solving the classical 
equations contain initial and final singularities; the implications, if any, of these 
singularities in the quantum theory are of much interest. 

For  illustrative purposes, I would like to give some concrete examples of flat 
space-times with initial singularities. Let ~ be a compact smooth two-dimensional 
surface of genus g, with no a priori complex structure assumed. It has a fundamen- 
tal group F = ~rl(Z ). Let H be the complex upper half plane, with its natural metric 
of constant negative curvature. The group SL(2, R) acts on H, preserving this metric. 
Let F '  be a subgroup of SL(2, R), isomorphic to F and acting discretely on H. Then 
H / F '  is a Riemann surface of genus g, with a constant curvature metric (inherited 
from H) which gives it a complex structure. 

Now, let X be 2 + 1 dimensional Minkowski space, with coordinates t, x, and y 
and metric ( d s ) 2 =  - ( d t ) 2 +  (dx)2 + (dy)  2. Let X + be the interior of the future 
light cone, that is, the points of t > 0 and t 2 - x 2 _ y 2  > 0. Let X -  be the interior of 

* F o r  the use of this principle to construct the canonical formalism in a manifestly covariant way, see 
refs. [8, 9]. 
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the past fight cone, consisting of points of t < 0 and t2 _ x2 _ y 2  > 0. The 2 + 1 
dimensional Lorentz group is SO(2,1); the 2 + 1 dimenisonal Poincar4 group is 
ISO(2,1) (the ' T '  means that we are including the translations). A happy fact is that 
SO(2, 1) and SL(2, R) are equivalent. Moreover, the hypersurface H '  in X +, defined 
by 

t 2 _ X 2 _ y 2  = 1, (1.1) 

(and t > 0) is isomorphic with H. Thus, we can regard the group F '  as a subgroup of 
SO(2,1) acting on H';  the quotient H'/F' is a Riemann surface of genus g. Now, to 

get a flat space-time, we consider F '  to act not just on H '  but on the whole future 
light cone X +. The quotient Y +-- X +/F' is flat, since X + is flat and F '  preserves 
the metric of X. If we regard the hypersurfaces 

t2 - -  x 2 - -  y 2 = ' r  2 , (1.2) 

as surfaces of "equal time", with r playing the role of " t ime",  then the equal time 
slices of this flat space-time are Riemann surfaces of genus g. Eq. (1.2) describes an 
expanding universe, expanding from an initial singularity at r = 0. Likewise, simply 
by considering X - / F '  instead of X +/F', we can obtain flat space-times with a final 
singularity. These space-time models depend on the 6 g - 6  real moduli of a 
Riemann surface of genus g (which enter in the choice of F'). 

Are these all of the flat space-times in which "space" is of genus g? Certainly not. 
^ 

The problem can be analyzed as follows. Let M be a flat space-time and let M be its 
simply connected universal cover. Being flat and simply connected, 1~I is automati- 
cally isometric to Minkowski space, X, or perhaps to a subspace thereof. Let 3' be a 
noncontractible loop in M; such a loop is a map of a circle into M such that 
y (o  + 2rr) -- "/(o). If such a loop is lifted up to lVl c X, it does not close; it will only 
close modulo an isometry, that is, an element of ISO(2,1). Let us denote the element 
of ISO(2,1) associated in this way to a loop 3' in M as ~(3'). It is easy to see that the 
map y ~ qffy) must be a homomorphism. Thus, flat structures on a given manifold 
M give homomorphisms of %(M) into ISO(2,1). Conversely, given a homomor-  
phism of ~rl(M ) into ISO(2,1), the image of %(M) is a subgroup F of ISO(2,1), and 
f rom this data we can reconstruct a flat three manifold, namely X/F, X being, as 
before, three-dimensional Minkowski space. 

In our case, with M = 2; × R 1, since R 1 is contractible, %(M) reduces to %(2;). 
Thus, flat structures on 2; x R 1 correspond more or less to homomorphisms of % ( ~ )  
into ISO(2,1). I say "more  or less" because given a homomorphism, the space-time 
that one would reconstruct from it may have very nasty singularities. We have 
already given examples with initial and final singularities. Because of a rather 
non-trivial theorem that will be discussed in subsect. 3.1, certain even worse 
ailments, such as totally collapsed handles on the Riemann surface 2;, will not arise. 
(An interesting example of an exotic type of singularity which one might expect to 
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run into when the vierbein and spin connection are independent variables is that 
discussed in ref. [10]. We will see later that this is one type of singularity that we will 
definitely have to allow.) Much of the interest in trying to quantize 2 + 1 dimen- 
sional gravity is precisely the question of what class of objects should be considered 
in defining the "space of all classical solutions". In sect. 2, we will follow a simple 
canonical analysis which will lead us to consider the moduli space of all homornor- 
phisms of ~ri(~7 ) into ISO(2,1). 

How many parameters are required to specify a homomorphism of rrl(S ) (with 
a Riemann surface of genus > 1) into ISO(2,1), or more generally, into any Lie 
group G? This question may easily be answered as follows. The fundamental group 
7rl(~ ) is naturally described with 2g generators (the a and b cycles) and one 
relation. A homomorphism ~ri(2~ ) ~ G can be described by giving 2g elements of G, 
one for each generator, obeying one relation. In addition, we must identify two 
homomorphisms if they differ by conjugation by an element of the group. This 
enables us, as far as counting parameters is concerned, to remove another element 
of G from the description of the hornomorphism. Thus, the dimension of the moduli 
space is 2g - 2 times the dimension of G. 

Various choices of G are of interest. The moduli space of homomorphisms of 
~rl(~ ) to G, for G = SL(2, R), is closely related to the moduli space of complex 
structures that can be put on 2~*. For G = ISO(2,1) it is closely related to the space 
of flat structures on ~ x R 1. These are the two examples that we have discussed 
above. If we include a cosmological constant in general relativity, then Minkowski 
space is replaced by de Sitter space or anti-de Sitter space, and ISO(2,1) is replaced 
by SO(3,1) or SO(2,2). The homomorphisms of ~rl(S) into one of these groups 
correspond more or less to the solutions of Einstein's equations with a cosmological 
constant of appropriate sign. If we replace the usual Einstein-Hilbert action of 
three-dimensional gravity with a pure Chern-Simons action, which is conformally 
invariant, then the symmetry ISO(2,1) of Minkowski space is enlarged to the 
conformal group SO(3,2). Homomorphisms of ~ri(S ) into this group correspond 
more or less to conformally flat structures on 2 x R 1. 

In the case of ISO(2,1), since this group is six dimensional, the space of flat 
structures on 2 X R 1 has dimension 1 2 g -  12, exactly double the dimension of the 
family that we found in the discussion surrounding eq. (1.2). The discrepancy 
obviously came from considering only the Lorentz transformations and not the 
translation generators in ISO(2,1). 

Even if there were no singularities to raise perplexing questions of principle about 
what we mean by " the  space of classical solutions", it would not be satisfying to 
construct this space, formulate quantum mechanics on it, and dogmatically declare 

* This is so because if we regard X as H/F' ,  then a noncontractible loop on ,Y lifts on F '  to a loop that 
closes only modulo an SL(2, R) transformation. The moduli space of homomorphisms to SL(2, R) 
will be further discussed in subsect. 3.1 
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this to be the solution of 2 + 1 dimensional gravity. One would like a field-theoretic 
analysis that naturally leads to the alleged quantum theory. Without basing our 
understanding of 2; x R 1 on such a field-theoretic analysis, any understanding we 
might achieve of it would be purely isolated, unrelated to the study of other 
quantum field theories or to the study of the same theory on more elaborate three 
manifolds. So the bulk of this paper is devoted to a systematic field-theoretic 
analysis of quantum gravity on ~ x R 1, the key insight being that the constraints of 
the canonical formalism* can be neatly untangled by making an equivalence of 
2 + 1 dimensional gravity with a suitable gauge theory. This gauge theory is like an 
ordinary Yang-Mills theory except that instead of the ordinary Yang-Mills interac- 
tion one has purely the Chern-Simons interaction. The vierbein formalism of 
general relativity makes general relativity temptingly similar to a gauge theory, and 
over the years many physicists have attempted to exploit this in different ways, e.g. 
refs. [14,15]. Nevertheless, in four dimensions, gravity and gauge theory are defi- 
nitely not equivalent. The surprise in the present paper is that we will find a precise 
equivalence of gravity and gauge theory in three dimeions. Our results can probably 
be regarded as a three-dimensional analog of recent proposals by Ashtekar for 3 + 1 
dimensional gravity [16]; in this work, an attempt has been made to give a gauge 
theory interpretation to the hamiltonian constraint equations of 3 + 1 dimensional 
gravity. In related work, it has been proposed recently that 3 + 1 dimensional 
gravity is related to knot theory [17]. What the future of this proposal will be in 
3 + 1 dimensions remains to be seen. But if the relation that we will allege between 
gravity and Chern-Simons gauge theory is valid at the quantum level, then there is 
a close relationship between gravity and knot theory at least in 2 + 1 dimensions, 
since Chern-Simons gauge theory in that dimension is intimately connected with 
knot theory [18]. 

In sect. 2, we will discuss the canonical formalism of 2 + 1 dimensional gravity at 
the classical level. In sect. 3, we consider quantization. Finally, in sect. 4, we discuss 
some additional topics, including some aspects of the motivation for this work that 
we have not touched on yet. 

The canonical formalism of I + 1 dimensional and 2 + 1 dimensional gravity have 
been previously discussed in ref. [5]. In addition, after writing this paper, I learned 
of some earlier papers [6,8] in which 2 + 1 dimensional gravity is discussed 
somewhat along the lines of the above comments. We will try to extend their 
discussion in several ways, most crucially by showing how to actually solve the 
hamiltonian constraints of 2 + 1 dimensional gravity and put the subject in a 
standard field-theoretic framework. This framework could be used, in principle, on 
an arbitrary three manifold though we will consider only three manifolds of the 
form ~ x R x in this paper. Also, our viewpoint leads, as we will see at the end of 
sect. 3, to a straightforward renormalizable perturbation expansion for 2 + 1 dimen- 

* For the foundations of the canonical formalism of general relativity, see refs. [11-13]. 
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sional quantum gravity. I also learned after writing this paper of new geometrical 
results [19] about the locally homogeneous lorentzian space-times that we will be 
studying. 

2. Relation to the Chern-Simons  action 

We begin with general relativity on a space-time manifold M, of dimension d, 
which is to have lorentzian signature. We will denote tangent-space indices as i, j ,  k 
and "Loren tz"  indices as a, b, c. It is convenient to describe general relativity in 
terms of a vierbein ei a and a spin connection ~ab. Geometrically, these have the 
following interpretation. 

The smooth manifold M comes naturally with its tangent bundle T. We 
also introduce an abstract d-dimensional vector bundle V, with structure group 
S O ( d -  1,1). (Saying that V has structure group S O ( d -  1,1) is the same as saying 
that it is endowed with a metric, which we write as */ab, of signature ( -  + + . . .  +) ,  
and a volume form which we write % . . . . . .  .) We suppose that V has the same 
topological type as T so that isomorphisms between V and T exist. However, there is 
no natural choice of an isomorphism. A vierbein e is a choice of isomorphism 
between T and V. It may also be regarded as a V-valued one form, obeying a certain 
condition of invertibility. The spin connection ~ can be regarded as an SO(d - 1,1) 
valued connection on V. The isomorphism e and the connection ~ can be regarded 
as the dynamical  variables of general relativity. 

The curvature tensor is defined as 

a a a a 

Ri j  b= Oiraj b--  3jO)i b "~- [~Oi, ~j] b' (2.1) 

or simply as R = da~ + oa/x o~. It  can be regarded as a two form with values in A e V. 
( / k  k V will denote the k th  antisymmetric tensor power (exterior power) of V.) 

Let us consider, or instance, the case of d = 4, which is the physical case at least 
macroscopically. The Einstein-Hilbert  action can be written 

1 [" ijkl [ a br.  c'd~ I=TJM~ Cabcd~eie j~kl  ) .  (2.2) 

This formula may be interpreted as follows. The expression e/x e/x R is a four form 
on M with values in V ® V ® A 2 V, which maps to A 4 V. But since V, with structure 
group SO(3,1), has a natural volume form, a section of A4V may be canonically 
regarded as a function. Thus, there is an invariantly defined integral f e / x  e /x  R ,  
and this is what is written in eq. (2.2). 

To  verify that eq. (2.2) is indeed the appropriate action for the Einstein theory of 
gravity, one proceeds as follows. The metric 7/ab on V, together with the isomor- 

a a b phism e i between T and V, give a metric gij = ei ej 7la b o n  T;  t h i s  is the same as an 
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ordinary metric on the manifold M. The connection o~, having structure group 
S O ( d -  1,1), is metric compatible. Varying eq. (2.2) with respect to the connection 

one learns that 

D,e 7 - Dje~ = 0, (2.3) 

where D~ is the covariant derivative with respect to the connection ¢0. Eq. (2.3) 
precisely says that the metric compatible connection ~0 is also torsion free. These 
conditions uniquely identify ~0 as the riemannian or Levi-Civita connection associ- 
ated with the metric g~j on M. Finally, varying eq. (2.2) with respect to e we learn 
that 

ek,~ = Rikab = 0 (2.4) 

(here eka i s  the inverse matrix of e). This is equivalent to vanishing of the Ricci 
tensor Rij = ejbek a Rikab . So eq. (2.4) is tantamount to the Einstein equations in 
vacuum. 

Actually, there is a key limitation in the above argument. We assumed that the 
vierbein ei a is invertible, so that the inverse matrix exists. This is related to the fact 

a b that in general relativity, the metric tensor gij = e~ ej ~l,~b is supposed to be 
non-degenerate. In fact, since the definition of the Riemann curvature tensor uses 
the inverse of ggj, a configuration in which ei ~ is not everywhere invertible must be 
regarded as a singularity in classical general relativity. This is precisely the type of 
singularity studied in ref. [10] (for the same reason - singularities of this type are 
very natural when the vierbein and connection are regarded as independent vari- 
ables). Permitting ei a t o  not be invertible may seem like a minor change, since the 
invertible e~ ~ 's are in any case dense in the space of all possible e~ a. However, if one 
attempted to project eq. (2.2) onto a subspace of invertible ei a's, it would ruin the 
following discussion at crucial stages. We will see at the end of sect. 3 that in a sense 
the attempt to make such a projection is what leads to the alleged unrenormalizabil- 
ity of 2 + 1 dimensional gravity. So the only definite statement we will make in this 
paper about the role of singularities in quantum gravity is that from the point of 
view that we will develop, the type of "singularity" related to a non-invertible 
vierbein must be permitted to make sense of the quantum theory, at least in 2 + 1 
dimensions. 

2.1. T H E  V I E R B E I N  A S  A G A U G E  F I E L D  

In the last twenty years, many physicists have wished to combine together the 
vierbein ei ~ and the spin connection ~i~b into a gauge field of the group ISO(d - 1,1). 
The idea is that the spin connection would be the gauge field for Lorentz transfor- 
mations, and the vierbein would be the gauge field for translations. One then tries to 
claim that "general relativity is a gauge theory of ISO(d - 1,1) ' .  However, there has 
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always been something contrived about attempts to interpret general relativity as a 
gauge theory in that narrow sense. One aspect to the problem is that in four 
dimenisons, for instance, the Einstein action (2.2) is of the general form fe A e A 
(d~0 + o~2). If we interpret e and ~ as gauge fields, we should compare this to a 
gauge action fA A A A (dA + A2). But there is no such action in gauge theory. So 
we cannot hope that four-dimensional gravity would be a gauge theory in that sense. 

In three dimenisons, the situation is rather different. For a space-time manifold 
M of dimension three, the Einstein-Hilbert action would be 

(2.5) 

If we interpret the e 's and to's as gauge fields, this is of the general form 
A d A  + A 3, and might conceivably be interpreted as a Chern-Simons three form. 
The study of such terms in three-dimensional gauge theory has a relatively long 
history. Indeed, the Chern-Simons action in non-abelian 2 + 1 dimensional gauge 
theory was studied in refs. [20, 21], where it was considered as an additional term 
added to the unusual Yang-Mills action. In ref. [22], a quantization law associated 
with the Chern-Simons term was discovered. Abelian gauge theory with only the 
Chern-Simons term was studied by Schwarz [23] and in unpublished work by 
Singer; those authors related this theory to certain topological invariants 
(Ray-Singer  analytic torsion). Non-abelian gauge theory with only the Chern-  
Simons interaction has recently turned out to be exactly soluble [18]. It is also 
interesting to note that string field theory can be formulated as a more abstract 
version of a 2 + 1 dimensional gauge theory with only a Chern-Simons action [24]. 

We will claim that three-dimensional general relativity, without a cosmological 
constant, is equivalent to a gauge theory with gauge group ISO(2,1) and a pure 
Chern-Simons action. 

Let us recall some facts about the Chern-Simons interaction. For a compact 
gauge group G, this may be written 

Ics = ½fMTr(A A dA + 2A AA A A ) .  (2.6) 

Here we are regarding the gauge field A as a Lie-algebra-valued one form, and "Tr"  
really represents a non-degenerate invariant bilinear form on the Lie algebra. 

Thus, if we choose a basis of the lie algebra, and write A = A~T~, then the 
quadratic part of eq. (2.6) becomes 

Tr(TaTb) . fM(A ~ A d a b ) .  (2.7) 
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Here dab ----- Tr(T~Tb) plays the role of a metric on the Lie algebra, and this should be 
non-degenerate so that eqs. (2.6) or (2.7) contains a kinetic energy for all compo- 
nents of the gauge field. 

Thus, before we ask whether gravity in 2 + 1 dimenisons is equivalent to ISO(2,1) 
gauge theory with a Chern-Simons interaction, we should ask whether such a 
Chern-S imons  interaction exists, or in other words whether there exists an invariant 
and non-degenerate metric on the Lie algebra of ISO(2,1). 

Let us first consider the general case of ISO(d - 1,1). The Lorentz generators are 
j~b, and the translations are pa,  with a, b = 1 . . . . .  d. A Lorentz-invariant bilinear 
expression in the generators would have to be of the general form W = X Jab j a b +  

yPa Pa, with some constants x and y. However, in requiring that W should 
commute  with the P b, we learn that we must set x = 0. At that point we are clearly 
no longer constructing a non-degenerate bilinear form on the Lie algebra, so there 
would be no reasonable Chern-Simons three form for I S O ( d -  1,1) for general d. 

The magic of d = 3 is that in this case we can set W = CabcPaJ bc. This is easily 
seen to be ISO(2,1) invariant as well as non-degenerate. Therefore, a reasonable 
Chern-S imons  action for ISO(2,1) will exist. It remains to construct it and compare 
it to 2 + 1 dimensional general relativity. 

For  d =  3 it is convenient to replace j a b  with J ~ =  1 ~b~, 7c abe. The invariant 
quadratic form of interest is then 

(Ja, Pb) = ~ab, (Ja, Jb) = (Po, Pb) = O. (2.8) 

The commutat ion relations of ISO(2,1) then take the form 

[L ,  Yb] = ~ . b c J  c, 

[Ca, ~b] = 0. 

[Ja, Pbl = %bee c, 

(2.9) 

(The fact that this is ISO(2,1) and not ISO(3) is hidden in the fact that it is the 
Lorentz metric that is used in raising and lowering indices. This will not always be 

indicated explicitly.) 
Let us use these formulas and construct gauge theory for the group ISO(2,1). The 

gauge field is a Lie-algebra-valued one form 

A i = e~/Pa + %~J~. (2.10) 

An infinitesimal gauge parameter would be u = paP a + raJa, with O a and r a being 
infinitesimal parameters. The variation of A i under a gauge transformation should 

be 

~A i = - O i u  , (2.11) 
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where by definition 

Diu = Oiu + [ A i, u]. (2.12) 

Upon evaluating eq. (2.10), we arrive at the transformation laws 

~eia _ Oipa EabCeibq. c abc = - -  - -  E £ O i b P c  , 

~02i a O i T a  __ a b c  ~ -  - -  C 09ib" Q . (2.13) 

Now we calculate the curvature tensor 

F U :  [D/, Dj] = Pa( 3,ej a -  aje, a + "ahc(~oibejc + eib°Jjc)) 

a a a b c  + ,  (2.14) 

If now we were studying ISO(2,1) gauge theory on a manifold without boundary of 
dimension four, we would form a topological invariant of the form fFaA Fbdah 
where dab is an invariant quadratic form on the Lie algebra. Using the quadratic 
form (2.8), we get for a four manifold Y the invariant 

1 f y  i j k l  a - -  a a b c  ' ( ? j e i +  eib~Ojc)) Oie j ~ ( OOibejc + 

d e x ( ok ,. - + ) .  (2.15) 

Denoting the integrand in eq. (2.15) as U, a straightforward computation shows that 
U is a total derivative, U =  dV. Therefore, if the four manifold Y has for its 
boundary a three manifold M, eq. (2.15) reduces to an integral on M. This integral is 
by definition the Chern-Simons action, and one easily finds it to be 

f M  a a b c (2.16) 

By this construction, eq. (2.16) is automatically invariant under the gauge transfor- 
mations (2.13). In any case, this is easy to verify. 

Now, a look back to eq. (2.5) reveals that the ISO(2,1) Chern-Simons action 
(2.16) precisely coincides with the 2 + 1 dimensional Einstein action. Thus, we have 
essentially succeeded in showing that 2 + 1 dimensional gravity may be interpreted 
as Chern-Simons gauge theory. However, there is still an important point to clear 
up. The transformation laws (2.13) do not coincide with the usual transformation 
laws of 2 + 1 dimenisonal gravity. There is no problem with the local Lorentz 
transformations whose generators have been called r a in eq. (2.13); the terms in eq. 
(2.13) proportional to r a are the standard formulas for local Lorentz transforma- 
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tions. The problem is with the generators O ~ which hopefully should be related to 
diffeomorphisms. From eq. (2.13) we see that under a transformation generated by 
the p's, the transformation law is 

~ e  i ~_ _ Oipa _ abc a a ~ coibPc, ~coi ----- O.  (2.17) 

At first sight, eq. (2.17) does not seem to have much in common with the standard 
formulas for transformation under diffeomorphisms, but we want to show that they 
are equivalent. Under a diffeomorphism generated by a vector field - d ,  the 
standard transformation law would be 

k a a k a ~ e i a = - v  (ake , - O i e  k ) - O , ( o e  k ) ,  

~coi~ a_--U k (akcoia _aicoka ) _ e i ( u  k(d ka ). (2.18) 

_ a  _ _  oke a If we let p - k ,  then we find that the difference between eqs. (2.17) and (2.18) is 

~ a a k a a 
3 e  i - -  3 e  i = - - o  ( D k e  i - -  D i e  k ) + c abcvkcokbeic. (2.19) 

On the fight-hand side of eq. (2.19), one term is proportional to 

a a 
Dke i - Die ~ , (2.20) 

and this term vanishes by the equations of motion. The remaining term on the 
fight-hand side of eq. (2.19) is a local Lorentz transformation with infinitesimal 
parameter 

r"  - Vkcok" . (2.21) 

Likewise, if one considers the variation of co under transformations generated by p~, 
eq. (2.17) is equivalent to eq. (2.18) on shell. To be precise, the variation of co under 
local Lorentz transformations vanishes in eq. (2.17), while in eq. (2.18) it does not 
vanish identically but is equal on shell to a local Lorentz transformation with 
parameter (2.21). 

Therefore, since local Lorentz transformations are in any case among the local 
symmetries of the problem, it does not matter whether one uses eq. (2.17) or eq. 
(2.18) as long as one is planning to impose the equations of motion (2.20). This is 
the key to the simplicity of three-dimensional gravity. All of the difficulties, both 
practical and conceptual, in studying the canonical formalism are associated with 
thinking of diffeomorphisms as operations that move the initial-value surface in an 
ambient space-time. The equivalence, on shell, of eqs. (2.17) and (2.18) means that 
in three-dimensional gravity it is not necessary to think in terms of constraints that 
generate motions of the initial-value surface. This greatly simplifies the whole 
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conceptual framework of three-dimensional gravity. Above all it means that, just as 
in ordinary quantum mechanics, where the formula e -imt,+t-') = e -mr2- e -rot1 is a 

key part  of our intuition, the transition amplitudes in three-dimensional gravity can 
be factored in sums over intermediate states. A transition from an initial state A to 
a final state C can be represented in terms of a sum over all possible intermediate 
states B that might be witnessed on some intervening spacelike hypersurface - j u s t  
as in Yang-Mills  theory. 

2.2. INCLUSION OF A COSMOLOGICAL CONSTANT 

We would now like to generalize this discussion to include a cosmological 
constant in three-dimensional gravity. The generalized lagrangian is 

f M  ( a a a b c i ~  a b c~ I =  c i j k  e i a ( O j t o  k - -OkO)  j ) + e a b c e i t o j t O k  + - ~ A e a b c e i e j e k  ) .  ( 2 . 2 2 )  

The equations of motion now say not that space-time is flat but that space-time is 
locally homogeneous, with curvature proportional to X. The simply connected 
covering space of such a space-time is not a portion of Minkowski space, but a 
portion of de Sitter or anti-de Sitter space, depending on the sign of ~. These latter 
spaces have for their symmetries not ISO(2, 1) but SO(3,1) and SO(2,2), respec- 
tively. Thus, it is reasonable to guess that if three-dimensional gravity without a 
cosmological constant is related to gauge theory of ISO(2, 1), then three-dimensional 
gravity with a cosmological constant will be related to gauge theory of these latter 
groups. This proves to be the case. 

To begin with, we generalize eq. (2.9) to 

[Jo, Jd =,o~d c, [L,  Pd=,obcPc, [ea, P ~ l = X , ~ J  c. (2.23) 

Introducing the gauge-field and covariant derivatives as in eqs. (2.10) and (2.12), we 
find that the transformation laws (2.13) generalize to 

3ei a = _ Oip a - cabceib,rc - -  ~abcc.OibPc ' 

~O)i a = --  O i,.i -a --  i[abcc.OibTc --  Xcab~e ibPc.  (2.24) 

And formula (2.14) for the curvature is replaced by 

Fij= P~( OieS-- OjeT + Gb~(~oibef + e i b  f ) )  

" ~ c "b~' ~o Xeihej,)). (2.25) +J~(Oi% - O?g + t ~b,ojc+ 
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The formula (2.8) gives an invariant quadratic form on the generalized Lie algebra 
(2.23). Using it, we find that the Chern-Simons three form comes out to be 
precisely the Einstein lagrangian (2.22) with cosmological constant included! The 
equations of motion derived from this lagrangian are precisely the vanishing of the 
field strength (2.25). Vanishing of the coefficient of P~ in eq. (2.25) is the assertion 
that ~o is the Levi-Civita connection; and vanishing of the coefficient of J~ is then 
the Einstein equation with a cosmological constant. 

2.3. A MORE GENERAL LAGRANGIAN 

At this point it seems appropriate to point out a rather enigmatic feature of 
three-dimensional gravity. In addition to the invariant quadratic form (2.8), there is 
a second invariant quadratic form on the Lie algebra (2.23), namely 

(J~, Jb) = Bah, (J~, Pb) = O, (Pa, Pb) = XSab" (2.26) 

Actually, eq. (2.26) is the specialization to d = 3 of a quadratic form that would 
exist for any d. For X = 0, eq. (2.26) is degenerate. This is the original reason that 
we considered eq. (2.8) instead. For X 4: 0, the Lie algebra (2.23) is simple, and has 
only the unique invariant quadratic form (2.26), for every d ¢ 3. The existence for 
d = 3 of two invariant quadratic forms (2.8) and (2.26) is a consequence of the 
isomorphisms SO(4) = SU(2) × SU(2), SO(2, 2) -- SL(2, R) × SL(2, R). (Though 
SO(3,1) does not undergo such a splitting over the real numbers, its complexifica- 
tion does split and this gives the two quadratic forms that we have noted.) 

Beginning with the quadratic form (2.26) and following the usual steps, one 
arrives at the new Chern-Simons lagrangian 

f a a 2£ (~0 b c] 

a a ~ , ,  a b c~ 
+X# ' (0ke  t - Ote k ) + ~a,,b,~oj eke, ) .  (2.27) 

Therefore, eq. (2.27) is invariant under eq. (2.24) and it makes sense to add it, with 
an arbitrary coefficient, to the original Einstein lagrangian (2.22). For generic values 
of this coefficient, the classical equations are unchanged-  they still assert the 
vanishing of the field strength (2.25). This is rather s t range-  the more general 
lagrangian is equivalent to eq. (2.22) classically, but this will not be so quantum 
mechanically. 
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The situation can be clarified, perhaps, by introducing 

( 1 t  J + =  ~ J~ _+ ~ - P ~  . (2.28) 

Of course, this step only makes sense for 2~ =g 0. If ?~ is negative, the J~ are complex. 
The Lie algebra (2.23) becomes simply 

[ J+  , J ;  ] =- ¢abcJ c +, [ J a  , J b  ] = Eabc J c -  , 

[ J + ,  Jb ]  = 0. (2.29) 

Obviously, for positive ),, eq. (2.29) is the Lie algebra of SO(2, 1)X SO(2,1), or 
SL(2, R) × SL(2, R). 

The corresponding connections are 

A7 -+= 0a,~_+ v/X-e, ~. (2.30) 

The covariant derivative (2.12) becomes simply 

D i = 3 i + J~+Aia++ J , , - A , " - .  (2.31) 

The two Chern-Simons forms are simply 

ijk ~+- a ~%bcAT+A~+a~+)  (2.32) 

They are related as follows to the actions that we constructed earlier. The "stan- 
dard" Einstein action (2.22) is 1 = ( I  + -  I )/47~-, and the "exotic" term (2.27) is 
[= ~(~++ I-). 

2.4. SUPERSYMMETRIC GENERALIZATION 

We will now briefly indicate how these results extend to 2 + 1 dimensional 
supergravity. In supergravity, the groups ISO(2,1), SO(3,1), and SO(2, 2) would be 
replaced by various supergroups. If the corresponding Lie superalgebras have 
invariant quadratic forms (symmetric in the graded sense), one could define 
Chern-Simons actions for these supergroups, and these Chern-Simons actions 
would serve as 2 + 1 dimensional supergravity actions. Thus, the issue comes down 
to whether the invariant quadratic forms that we have used on the Lie algebras of 
ISO(2,1), SO(3,1), and SO(2, 2) have appropriate supergeneralizations. 

To see that this is so, consider first the Lie algebra of SO(2,1), which is 
isomorphic to that of SL(2, R). This is the bosonic part of the superalgebra OSp(2] 1) 
which is important in string theory. The latter has bosonic generators J~ and 
fermionic generators Q~, transforming in the adjoint and spinor representations of 
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SO(2,1), respectively. There is an invariant Casimir operator JaJ~+c~#Q~Qp, 
corresponding to the existence of an invariant (graded symmetric) bilinear form on 
the OSp(211) Lie algebra. (Here e is the invariant antisymmetric tensor on the 
two-dimensional representation of SL(2, R).) 

Now, considering three-dimensional gravity, if the cosmological constant is nega- 
tive the bosonic group is SO(2,2), which is the same as SO(2 ,1)x  SO(2,1) or 
SL(2, R ) x  SL(2, R). Therefore, we can construct an " N  = 1" supergravity theory 
based on SL(2, R) × OSp(2ll  ) or an " N  = 2" theory based on OSp(2ll  ) × OSp(211 ). 
The appropriate  Chern-Simons actions will exist in these two cases since from our 
above discussion the relevant quadratic forms on the Lie superalgebras do exist. By 
the Wigne r - Inonu  contraction, one could get 2 + 1 dimensional supergravity theo- 
ries with zero cosmological constant and Chern-Simons actions. I do not know a 
similar construction with positive cosmological constant. 

2.5. C H E R N - S I M O N S  GRAVITY 

We will conclude this section with a brief discussion of what would usually be 
called 2 + 1 dimensional gravity with a Chern-Simons action [22]. (The terminology 
is of course somewhat misleading since we are claiming that ordinary 2 + 1 
dimensional gravity has a Chern-Simons interpretation.) Chern-Simons gravity 
means the following. The fundamental variable is a vierbein e 7. The spin connection 
is defined as a functional of ei ~ by requiring it to obey 

Die 7 - D j e i  a = O .  (2.33) 

The lagrangian is then the Lorentz Chern-Simons three form 

I'  = cijk ¢'di a - -  Ok a ..~ 3CabcO~i tOJ O)k . (2.34) 

I '  is not varied with respect to o~ regarded as an independent variable. Rather, one 
regards o~ as a functional of e via eq. (2.33) and varies eq. (2.34) with respect to e. 
The field equation obtained in this way is 

D, Rjk - DjRs, = 0, (2.35) 

with RU = R u -  ¼gu R" 
The lagrangian (2.34) - with ~o defined in terms of e via eq. (2.33) - is invariant 

under local Weyl transformations e i a ( x ,  y ,  t )  ~ e q'(x' y' t) . ei a, even though this is not 
manifest  in the way that eq. (2.34) is written. Consequently, eq. (2.35) is a 
conformally invariant equation. Indeed, the left-hand side of eq. (2.35) is the 
three-dimensional analogue of the Weyl tensor, and vanishing of eq. (2.35) is the 



E. Witten / 2 + 1 dimensional gravity 61 

condition asserting that space-time is conformally flat. Thus, the three-dimensional 
conformal  group SO(3, 2) plays in eq. (2.34) the role that ISO(2,1) plays in 2 + 1 
dimensional general relativity without a cosmological constant. Therefore, it is 
natural  to expect that eq. (2.34) is equivalent to an SO(3,2) gauge theory with 
Chern-S imons  action. To demonstrate this it is necessary to replace eq. (2.34) with 
an equivalent version in which eq. (2.33) would be an equation of motion rather 
than an independently imposed constraint. I will not attempt this here. 

3. Quantization 

We now turn to constructing a canonical formalism, with a view toward quantiza- 
tion. Thus, we consider the lagrangian (2.22) on a three manifold M = Z × R 1, with 
Z being a Riemann surface that plays the role of an "initial-value surface". Some 
subtleties arise in the canonical formulation because of the gauge invariance. A 
convenient reference on the general procedure is ref. [25]. The first step in construct- 
ing a canonical formalism is to introduce new variables, if necessary, to get a 
lagrangian that is linear in time derivatives. We can skip this step, since eq. (2.22) is 
already linear in time derivatives. If possible, one then separates out the variables 
into variables whose time derivatives are present in the lagrangian and variables 
whose time derivatives do not appear*• In our case, this is easily done. The variables 
whose time derivatives appear in eq. (2.22) are the "spatial" components of the 
vierbein and connection, namely ei a and ~0i a, for i = 1, 2. The variables whose time 
derivatives are absent in eq. (2.22) are the " t ime"  components e0 a and ~0 a. This 
convenient, global separation between variables whose time derivatives appear in 
the lagrangian and variables whose time derivatives do not appear, and the fact that 
the lagrangian is linear in the latter, make the construction of a canonical formalism 
relatively straightforward. 

Eq. (2.22) may be rewritten as 

A 
I =  - 2 [ d t  f UJei~ ~-- a 

J J~ dt  % 

+ f dt  f z ( e o  ° • ~ij( Oi(.dja__ ajidiaAr Eabc~OibO~jc ~_ )keabceibejc) 

_[_090 a ciJ(Oiej Ojei + a b c  • a _  a , (~ibejc + eibWjc)) ) . (3.1) 

• In discussing a closely related problem in ref. [18], I have adopted the possibly more familiar 
language of "picking the gauge .4 0 = 0". In the gravitational problem that we are considering here, a 
different and perhaps more careful and canonical language seems appropriate. 
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The Poisson brackets can be read off from the terms in eq. (3.1) that contain time 
derivatives. They are 

{ % ~ ( x ) , e j ~ ( Y ) }  = ½,iffl~b82(x - y ) ,  

{ e i a ( x ) , e j t , ( y ) }  = { OOia(X), OOjb(Y)} = 0 .  (3.2) 

In  addition, we must  impose the constraint equations. They are simply the equations 

8 I / 6 e o  a = 8 I /&oo  ~ = 0, or 

eiJ( Oiej a -  cgjei a + ,abc(O~ibejc + eibWjc)) = 0 ,  

, i j (  Oioaja_ aj~i,~ + ,abc(~ih~j ~ + )~eil~ejc) ) = 0 .  (3.3) 

Now,  let us take stock of what  these equations mean. Let G be the group 

ISO(2,1)  if X - - 0 ,  and its generalization SO(3,1) or SO(2, 2) if ~ is not  zero. It is 
a a 

natural  to regard, e; and oa;, for i = 1, 2, as a gauge field on the Riemann surface 

Z. The space of all such gauge fields, which we will call ~¢U, is a phase space on 

which we have defined Poisson brackets (3.2). This is not  yet the physical phase 

space, since it is necessary to impose the constraint equations (3.3). 
Those  constraint  equations have a very natural interpretation. The objects which 

appear  on the left of eq. (3.3) are precisely the curvatures or gauge-covariant field 
strengths constructed from the gauge field e, ~0. Vanishing of these constraints 

means that we are dealing with a gauge connection which locally is a pure gauge; 
the only gauge-invariant observables that do not vanish when the constraints are 
imposed are global observables, such as holonomies around possible non-contract-  

ible loops in Z. 
It  may  be appropriate  at this point  to pause for a slight digression about  the role 

of  constraints  in classical mechanics. In quan tum mechanics, the "constraints"  are 
operators,  and they are imposed by declaring that a "physical  state" is a state 

annihilated by the constraints. In our present problem, however, it is highly 

advisable to impose the constraints classically, before quantizing*. In  classical 
physics, the imposit ion of the constraints is a two-step process. One begins with a 
phase space on which some Poisson brackets are defined. In addition, one has some 
constraints.  These are certain functions on phase space. Let H ;  denote the con- 
straints. The first step in imposing the constraints classically is to declare that 
"phys ica l  values" of the canonical variables qi are values for which H I =  0. This is 

only half  of  the story, however. The second step is to interpret the constraints as the 

* The problem of imposing these particular classical constraints to reduce this particular phase space 
was one element in the work of Atiyah and Bott on equivariant Morse theory, two-dimensional gauge 
fields, and the moduli space of holomorphic vector bundles [26]. Of course, 2 + 1 dimensional gravity 
gives a new context for this problem. 
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generators of certain transformations of phase space, via 
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,~q'= E,l{ H',qi}, (3.4) 

with the E I being infinitesimal parameters. Under favorable conditions, which 
prevail in the problem of interest to us in this paper, the transformations (3.4) 
exponentiate to the action of a group ft. The second step in imposing the con- 
straints is to declare that two sets of "physical values" of the canonical variables are 
considered equivalent if they differ by an element of the group f~ generated by the 
constraints. Provided that the constraints generate a group, which we will call the 
constraint group, the  p h y s i c a l  p h a s e  space  o f  a cons t ra ined  s y s t e m  is the space  oJ 

so lu t ions  o f  the  cons t ra in t  equat ions  m o d u l o  the act ion o f  the cons t ra in t  group .  The 
Poisson brackets on the physical phase space are just the original Poisson brackets, 
restricted to functions that are invariant under the constraint group. 

In the case at hand, the phase space is easily determined. The canonical variables 
ei ~ and c0i ~ fit together into a G gauge field on Z. The constraint equations (3.3) 
assert that this gauge field is a "flat  connection", that is, the field strength vanishes. 
As for the group of transformations generated by the constraints, these are just 
gauge transformations! One may easily check, using the Poisson brackets (3.2), that 
the constraint operators that appear on the left of eq. (3.3) are the generators of the 
very gauge transformations that we have discussed in eq. (2.24) 

8ei  a = -- 3 ip ~ + eab'eib,r c. -- eab%ai~pc , 

8o~ a = _ 3i.r ~ - e~bqoi#q -- M ~ b % b p c .  (3.5) 

This should come as no surprise; in gauge theories, 6~q~/SAo is always the generator 
of gauge transformations. Thus, to construct the classical phase space which should 
be quantized, one simply takes the space of solutions of the constraints - namely 
the space of flat connec t ions -  and divides by the group generated by the con- 
s t r a i n t s -  namely, the group of gauge transformations. Consequently, the phase 
space ,//t' of 2 + 1 dimensional gravity is the same as the moduli space of flat G 
connections modulo gauge transformations. 

The Poisson brackets on ~ '  are just the original Poisson brackets on Y~, 
restricted to gauge-invariant functions. In other words, a physical observable is a 
function on ~t'. Modulo the constraints, functions on J// are the same as gauge- 
invariant functions on ;of', and the Poisson brackets of gauge-invariant functions on 
Y¢/" are computed using the Poisson brackets (3.2). 

In the introduction we have explained heuristically why the physical phase space 
of 2 + 1 dimensional gravity is related to the moduli space of flat G bundles. Now 
we have derived the result from a more conventional field-theoretic analysis. It 
remains to quantize the system. 
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3.1. REAL POLARIZATION 

We have obtained a finite-dimensional phase space J g  with well-defined Poisson 
brackets, and we wish to quantize it. In general, this is not a straightforward 
operation. Contrary to the impression that may sometimes be given in elementary 
quantum mechanics, there is no general way to quantize a classical system (even if 
there are no global anomalies). The problems have to do with the topology of phase 
s p a c e -  and, in the case at hand, the phase space ./4 is definitely quite subtle 
topologically. 

In practice, quantization usually requires a separation of the phase space variables 
into "coordinates" and "momenta" .  By definition, the "coordinates" are a maximal 
set of commuting variables. The quantum Hilbert space is then a suitable space of 
functions of the "coordinates". There actually are two important cases, the cases of 
a " rea l  polarization" or a "complex polarization". The first corresponds to the case 
in which the phase space J / i s  the cotangent bundle of some manifold sV'. In that 
case the quantum Hilbert space is the space of square integrable functions on ,A/'. 
The second case, of a "complex polarization", is the subject of subsect. 3.2. 

Let us look at the Poisson brackets (3.2). The e i are canonical conjugates of the 
wj. Naively, it appears that we are free to view the ei as coordinates and the wj as 
momenta,  or vice-versa. In the first case, the quantum Hilbert space ~ would be 
the space of functionals of the e~, and in the second case it would be the space of 
functionals of the ¢0 i. This treatment is naive because it ignores the constraints. The 
constraints say that a physical state must be gauge invariant. A look back to eq. 
(3.5) shows that it is impossible for a wave functional that only depends on the e~ to 
be gauge invariant, since the gauge-transformation law includes a term 3 e -  w. 
Another  way to say this is that there is no such thing as " the  space of all e~ modulo 
gauge transformations",  since the gauge variation of the e, depends on the values of 
the coj. Therefore, it is extremely awkward to impose the constraints if the eg are 
regarded as coordinates. 

What  happens if, on the other hand, the wj are regarded as coordinates? In this 
case, for ?, 4: 0, the situation is no better than before. But for ?~ = 0, we see in eq. 
(3.5) that the gauge-transformation law of wg is 3co - w. The transformation law of 
co is independent of e. 

If  the cosmological constant is zero, and we regard the cog as coordinates, it is very 
straightforward to impose the constraint equations*, coi can be interpreted as an 
SO(2,1) (or equivalently SL(2, R)) connection on the Riemann surface Z. If q / i s  the 
space of all such connections, then if there were no constraints to impose and we 
view the coi as the coordinates, the quantum Hilbert space would be the space of 
functions on ~/. Actually, we must incorporate the constraints. This is easy to do. 

* The idea that it would be best to view the connection data as the coordinates was envisaged by 
Ashtekar [16] in 3 + 1 dimensions. 
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The second equation in (3.3) says that the curvature of the connection to should 
vanish, and the second equation in (3.5) instructs us to identify two connections that 
differ by an SL(2, R) gauge transformation. Taken together, these conditions say 
that we should introduce the moduli space sV" of flat SL(2, R) connections modulo 
gauge transformations. The quantum Hilbert space, incorporating the constraints, is 
not the space of square integrable functionals on Y¢ but the space of square 
integrable functionals on sV. 

Geometrically, the situation may be described as follows. For zero cosmological 
constant, the relevant gauge group is ISO(2,1). The ISO(2,1) group manifold is the 
total space of the cotangent bundle of the SO(2, 1) manifold. Correspondingly, the 
moduli space Jr'  of flat ISO(2,1) connections is the total space of the cotangent 
bundle of the moduli space .A/" of flat SO(2,1) connections. 

Also, the Poisson brackets (3.2) induce on ~t' its natural symplectic structure as 
the cotangent bundle of .AP. Therefore, quantum mechanics on Jg  is very 
simple - the quantum Hilbert space is the space of L 2 functions on ~¢'. 

For clarity, let me make this candidate for the "physical Hilbert space" of 
quantum gravity with zero cosmological constant completely explicit. The funda- 
mental group of a Riemann surface X of genus g > 1 can be defined via 2g 
generators, which we denote 

ai, bj, i , j = l  . . . . .  g ,  (3.6) 

with one relation, 

a l b l a ; l b ; 1 . . ,  agbga~lbg ' = 1. (3.7) 

A point in .A r is a homomorphism of the group with generators (3.6) and relation 
(3.7) into SO(2,1). Such a homomorphism is described by representing the a / a n d  bj 
by elements of SO(2,1) which we will denote as U~ and Vj. These must obey 

U1VIUl lV i  1 . . .  fgVgUg 1Vg 1 = 1, (3.8) 

along with a topological condition that will be described presently. Two representa- 
tions are equivalent if they differ by a global gauge transformation 

U,. --* E-'UiE, Vj ~ E-1VjE, (3 9) 

for some fixed element E of SO(2,1). The quantum Hilbert space Jf~ is the space of 
functions '/ '(U, Vj), such that: (i) g' is defined on the hypersurface that is defined 
by eq. (3.8) together with a certain topological condition that we will describe next; 
(ii) qs is invariant under the transformation (3.9). 
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By the way, the Hilbert space structure on these functions is defined by the norm 
I ~ l  2 = f , / , .  g,. Evidently, for this to be invariant, ~ must be a half-density on 
rather than a "function".  It is generally true that quantization leads naturally to 
spaces of half-densities rather than spaces of "functions". This subtlety is usually 
slurred over in quantum mechanics texts, something which is possible because in 
most  physical problems there is an evident measure on coordinate space which can 
be used to give a canonical isomorphism between the space of half-densities and the 
space of functions. Even in the problem at hand, there are a variety of more or less 
natural  measures on Jg" which could be used to identify functions with half-densi- 
ties, but since none of these has compellingly appeared in the above construction, it 
is most  natural to think of the quantum Hilbert space X as the space of 
half-densities on JV. 

3.1.1. A topological discursion. We must now discuss a certain subtle but impor- 
tant topological point, which we have suppressed until this point. Actually, the 
moduli space ~V" of flat SO(2,1) connections on a Riemann surface Z is not 
connected, but contains several components. These arise as follows. A flat SO(2,1) 
connection is of course the same as a flat SL(2, R) connection. Since SL(2, R) 
naturally acts on a real two-dimensional vector space, a flat SL(2, R) connection 
defines a real two-plane bundle o ~ over Z. Such bundles are classified topologically 
by an integer, the Euler class. In general, the Euler class of a real two-plane bundle 
o ~ on a Riemann surface may have any integer value, but for a flat two-plane 
bundle, there is an upper bound - if ~ admits a flat SL(2, R) connection, its Euler 
class can be no bigger in absolute value than 2g - 2, which is the Euler class of the 
tangent bundle of a Riemann surface Z of genus g. 

Now, general relativity is supposed to be a theory of the dynamics of geometry. 
As we indicated in sect. 1, the relation of homomorphisms ep: ~rl(X ) ~ SL(2, R) to 
geometry is as follows. Suppose that the genus g of Z is greater than one. (For 
genus zero there are no non-trivial homomorphisms to discuss; for genus one the 
situation is more complicated than the simple situation that I will now summarize 
for g >~ 2, and I will not attempt to discuss this case.) Let H denote the complex 
upper  half plane. If dp embeds vrl(Z ) as a subgroup P of SL(2, R), and if moreover P 
is a discrete subgroup of SL(2, R), then H / F  is a complex Riemann surface with a 
complex structure determined by the homomorphism ft. All complex structures arise 
in this way, and the moduli space JV" of homomorphisms (3.8) that give discrete 
embeddings of the fundamental group of Z in SL(2, R) can be identified (if g >/2) 
with Teichmuller space. Thus, the quantum wave function ~/'(U i, ~ )  described 
earlier can - if restricted to homomorphisms that give discrete embeddings of the 
fundamental  group - be regarded as a function on Teichmuller space, or in other 
words as a function on conformal geometries. 

However, it is far from being true that all homomorphisms ~: ~rl(Z) ~ SL(2, R) 
give discrete embeddings. The opposite of an embedding would be the trivial 
homomorphism U/= Vj = 1 in eq. (3.8). If we consider " b a d "  homomorphisms of 
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rrl(2~ ) to SL(2, R), then SL(2, R ) / F  will be i l l -behaved-  non-compact, or with 
totally collapsed handles and other horrible singularities. At first sight, it appears 
that the construction of the quantum theory that we have advocated involves 
accepting much nastier singularities in the classical phase space than one might have 
wished. 

What saves the day (and, I think, eliminates what would have been the main 
criticism of our alleged solution of quantum gravity in 2 + 1 dimenisons) is the 
following remarkable theorem about Riemann surfaces. The "good" homomor- 
phisms that give discrete embeddings of the fundamental group are precisely those 
that correspond to flat bundles of Euler class 2 g -  2. A simple illustration of the 
singularities associated with flat bundles of Euler class less than 2 g -  2 is the 
following; if a homomorphism ~ is related to a flat bundle of Euler class 2g - 2 - 2r, 
then H / F  may be a Riemann surface of genus g with r totally collapsed handles. 
(The trivial homomorphism U, = ~ = 1 corresponds to a flat bundle of Euler class 
zero.) 

Thus, the moduli space Jff of all homomorphisms 7r1(~ ) -~ SL(2, R) has con- 
nected components corresponding to Euler class 2 g -  2, 2 g -  3 . . . . .  - ( 2 g -  2). So 
the description of the quantum Hilbert space in subsect. 3.1 was incomplete. 
Bearing in mind that the negative values of the Euler class differ from the positive 
values by a reversal of orientation, there are essentially 2 g - 1  possible Hilbert 
spaces, related to flat bundles of Euler class 0,1 . . . . .  2g - 2. But there is exactly one 
choice that gives the sort of geometrical interpretation that we expect. This is the 
case of maximal Euler class 2 g -  2, since the homomorphisms that give discrete 
embeddings are exactly those related to flat bundles with this value of the Euler 
class. Thus, with .A/" being the moduli space of homomoprhisms with the maximal 
Euler class, the quantum wave function ~ ' (~ ,  Vj) of the last section should be 
regarded as a function on JV'. It is remarkable that the simple topological 
restriction on the Euler class eliminates the pathologies that seem to be present in 
the description of classical phase space that comes by untangling the constraint 
equations. 

3.1.2. Closed timelike curves. Another issue that we can briefly discuss at this 
point is the question of closed timelike curves. The classical phase space that we are 
quantizing - the moduli space ~ '  of flat ISO(2,1) bundles - definitely includes flat 
space-times with closed timelike curves. To quantize the system we have separated 
the coordinates and momenta in such a way that the "coordinates" label the space 
JV" of flat SO(2,1) bundles. Suddenly, the closed timelike curves are not much in 
evidence, since any point in JV" corresponds to a sensible, "spacelike" Riemann 
surface. A quantum wave function '/'(U,, ~ )  does not correspond to any definite 
classical three geometry so that one cannot say that there definitely are or definitely 
are not closed timelike curves. Just as in any other quantum mechanics problem, 
one can construct quantum wave functions which, at least in some region of the 
parameter space, behave as if they are localized near any desired classical trajectory 
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(in this case, any desired classical three geometry). It would be interesting to study 
this more carefully and see if there really are wave functions that correspond, with 
very high probability, to space-times with closed timelike curves. 

3.1.3. Non-zero cosmological constant. We would now like to generalize this 
rather explicit description of the Hilbert space for X = 0 to the case in which the 

cosmological constant is not zero. If the cosmological constant is positive, the 
relevant classical phase space J g  is the moduli space of homomorphisms of rq(E) to 
$0(3,1).  It  can be shown [27] that this space is the total space of the cotangent 
bundle of the moduli space of homomorphisms of ~h(Z) to SO(3). Therefore, a real 
polarization is available, and the quantization can be carried out somewhat along 
the likeness of the above. However, the arguments are less elementary and will not 
be described here. As far as I know, it is not possible to find a real polarization 
when the cosmological constant is negative. There is another point of view about 
quantization of Jg ,  which works for any value of the cosmological constant. This is 
what we will discuss next. 

3.2. KAHLER POLARIZATION 

The alternative approach to quantization is to put a Kahler structure on ~// and 
quantize it as a Kahler manifold. In our discussion so far, the "spatial"  manifold 2~ 
has simply been a smooth compact two-dimensional surface, with no other a priori 
structure. Let us now, purely as an aid in quantization, pick a complex structure J 
on ~.  When this is done, the moduli space ~ of flat G bundles becomes a Kahler 
manifold in a natural way. Once one picks a complex structure on 2~, the space 
can be regarded as the moduli space of holomorphic vector bundles on E. More- 
over, the symplectic form that can be inferred from the Poisson brackets (3.2) can 
be interpreted as the curvature form that represents the first Chern class of a certain 

holomorphic line bundle L over Jr ' .  According to standard principles of quantiza- 
tion, the quantum Hilbert space ~ can be identified as the space of holomorphic 
sections of the line bundle L. 

This description of the quantum Hilbert space is not so explicit as the description 
that we gave, at the end subsect. 3.1, for the case of X = 0. So one natural problem, 
which we will not tackle here, is to describe the quantum Hilbert space more 
explicitly. Another natural problem is to elucidate the relationship between the two 
descriptions of the Hilbert space in the case of zero or positive cosmological 
constant, where both descriptions are available. 

3.3. 2 + 1 DIMENSIONAL GRAVITY AS A RENORMALIZABLE THEORY 

Upon  seeing that 2 + 1 dimensional gravity can be sensibly quantized, one is led 
to believe that there must be something wrong with the frequent assertion that it is 
an unrenormalizable theory. In fact, we will now address this point and claim that 
2 + 1 dimensional gravity has a straightforward renormalizable perturbation expan- 
sion. Indeed, it is a theory with zero beta function. 
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Let us recall the lagrangian of 2 + 1 dimensional gravity 
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l f M  a a b c 1)~ a b e~ I =  -~ , iJk(e ia(Oj~k,~  _ Ok~j ) + %bce  ̀  O~j O~ k + ~ ,abcei e j e  k j .  (3.10) 

We have restored Planck's constant h in eq. (3.10). By rescaling e (and redefining 
h) one may assume that X is 1, 0, or - 1 .  In the units considered here (Newton's 
constant is one and X is 1, 0, or - 1 ) ,  h is the only free parameter and is 
dimensionless. Perturbation theory - an expansion of the quantum theory in powers 
of the fields e and o~ - will be valid for small h. 

One immediately sees that if one considers e and w to be fields of dimension one, 
then the lagrangian (3.10) is renormalizable by power counting, since all terms in 
the lagrangian are of dimenison three. To actually construct perturbation theory, for 
quantization on a space-time manifold M, one picks a classical solution about which 
one wishes to expand. For example, one may expand about e = w = 0. In most 
physical theories, such a solution would be called the "trivial solution" correspond- 
ing to "unbroken  symmetry". In general relativity, the solution with e = 0 might be 
considered unphysical. Our point of view is that this difference between general 
relativity and other theories is illusory and that just as in other theories the "trivial 
solution" with unbroken symmetry plays a key role. Just as in any other renormaliz- 
able gauge theory, the short-distance behavior is independent of the choice of 
classical solution to expand around, so one can not understand the expansion 
around any solution unless one can understand the "unbroken phase of general 
relativity", that is, the expansion around e = w = 0. 

To actually construct this expansion, one needs gauge fixing. The gauge fixing 
may be carried out just as in Chern-Simons theories with compact gauge group [18, 
23]. One picks an arbitrary "background" metric g(0) on M (unrelated to e or ~)  
and imposes the gauge condition 

i a i a 
D(o ) e~ = D(o ) ¢o~ b = O, (3.11) 

with D(o )' denoting the covariant divergence with respect to g(0). The gauge condi- 
tion (3.11) may be implemented by introducing Lagrange multipliers fa, )~a b, and 
adding to eq. (3.10) the gauge fixing term 

" = faD(o)ei  + ~  b~ i ,~ A a IJ(O) O~i b J " (3.12) 

In the usual fashion, this must be supplemented with Faddeev-Popov ghosts. The 
point of this gauge choice is that eq. (3.12) (and the ghost action) preserves the 
power-counting renormalizability of eq. (3.10). 
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Once it is accepted that eq. (3.10) leads to a renormalizable perturbative expan- 
sion, a variety of arguments show that the beta function must be zero. For one 
thing, the coupling constant in the Chern-Simons theory with compact gauge group 
is quantized, so it cannot be renormalized. The Feynman diagrams that come in 
quantizing eq. (3.10) are the same diagrams as the diagrams of the compact 
Chern-S imons  theories, so they too must be finite. Another way to state much the 
same thing is that although eq. (3.10) is invariant under gauge transformations, it is 
not the integral of a gauge-invariant local functional. However, the structure of 
quantum perturbation theory shows that the counterterms, if any, are integrals of 
gauge-invariant local functionals, so the counterterms required to renormalize eq. 
(3.10) cannot  include renormalization of the interactions that appear in eq. (3.10). 
Since there are in fact no other possible gauge interactions that are renormalizable 
by power counting, eq. (3.10) must lead to a finite quantum theory. 

Given the simplicity of the above arguments, why is it usually felt that 2 + 1 
dimensional gravity is unrenormalizable? 2 + 1 dimensional gravity appears un- 
renormalizable if the connection co is eliminated and the theory is written entirely in 
terms of the metric g,j = eiaej a. In terms of gi;, the Einstein-Hilbert  action is 
non-polynomial  - in sharp contrast to the simple polynomial structure of eq. (3.10). 
Also, to write the Einstein-Hilbert  action in terms of g i j ,  o n e  must introduce the 
inverse metric giJ. In particular, when general relativity is written in terms of the 
metric (rather than the independent vierbein and spin connection), it is impossible 
to see the unbroken phase g = 0". However, it is quite clear, in the renormalizable 
perturbat ion expansion sketched above, that a s  ei a is a field of positive dimension, 
the short-distance behavior will involve the behavior in the unbroken phase e = 0. 
Thus, the fact that one has renormalizability in the description with e and co is 
closely related to the fact that in this description one can see the unbroken phase 
e = co = 0. The usual attempt to quantize 2 + 1 dimensional gravity in terms of g~j is 
somewhat analogous to discussing a spontaneously broken gauge theory in a 
"uni ta ry  gauge" in which the underlying symmetry is not manifest. The attempt to 
quantize gauge theories in unitary gauge is notoriously treacherous. 

It  is amusing to think about 3 + 1 dimensional gravity from this point of view. 
The lagrangian is of the general form 

/ ( 4 )  - -  fe/x e A (dco + co A co). (3.13) 

If one hopes for "power-counting renormalizability," one needs to assign dimension 
one to both e and co, so that every term in eq. (3.13) is of dimension four. (Again, 
this is in contrast to the fact that the metric and vierbein are usually considered to 

* This is related to the fact that usually, in discussions of the quantization of gravity, g is considered to 
be dimensionless, while in our treatment one must consider g to have dimension two, since e has 
dimension one. 
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have dimension zero.) As e and w have positive dimension, the short-distance limit 
must  have e = ~o = 0. The problem is now that as eq. (3.13) has no quadratic term in 
an expansion around e = ¢0 = 0, one cannot make sense of the "unbroken phase" 
that should govern the short-distance behavior; that is the essence of the unrenor- 
malizability of quantum gravity in four dimensions. 

4. Some additional considerations 

The discussion of 2 + 1 dimensional gravity that we have given above raises many 
questions. In this concluding section I would like to briefly draw attention to a few 
of these questions, without claiming to solve any of them. 

4.1. CONCEPTUAL PROBLEMS OF QUANTUM GRAVITY 

One would certainly like to use 2 + 1 dimensional gravity as a probe to test some 
of the conceptual problems of quantum gravity. There are at least two outstanding 
problems that one would wish to investigate. 

One concerns the singularities of quantum gravity. The classical phase spaces that 
we are quantizing include space-times with the initial and final singularities of the 
classical theory; it may be possible to say something interesting about the relation of 
these classical singularities to the quantum theory. 

One is also interested in changes of topology in quantum gravity. It is not at all 
clear that the logical framework of quantum gravity requires one to consider 
processes in which the topology of space changes, but it is certainly interesting to try 
to calculate amplitudes associated with such processes. Until now, string theory, 
regarded as general relativity in 1 + 1 dimensions, is the only situation in which one 
knows how to do sensible calculations with change of topology in general relativity. 
However, in some other generally covariant theories, such as Gromov /F loe r  theory 
in 1 + 1 dimensions, Donaldson/Floer  theory in 3 + 1 dimensions, and non-abelian 
Chern-S imons  theory in 2 + 1 dimenisons, one has a sensible formalism in arbitrary 
space-time topology. The close relation of 2 + 1 dimensional general relativity to 
non-abelian Chern-Simons theory suggests that it will be possible to do calculations 
for processes with change of topology also in 2 + 1 dimensional relativity. Doing 
this will require extending the solution of the non-abelian Chern-Simons theory 
f rom the compact  gauge groups that are related to the Jones polynomial to the 
non-compact  groups, such as ISO(2,1) and SO(3,1), that are relevant to 2 + 1 
dimensional general relativity. 

4.2. EUCLIDEAN CONTINUATION 

As we have just indicated, our formal arguments relating 2 + 1 dimensional 
gravity to Yang-Mil ls  theory with a Chern-Simons term are not limited to 2~ x R 1. 
Formally, this connection should hold on an arbitrary three manifold. It seems 



72 E. Witten / 2 + 1 dimensional gravity 

natural to believe that it should hold even after any euclidean continuation that may 
be valid. But this raises puzzling issues. 

Usually, the Einstein action is real whether one is in Minkowski or euclidean 
space. But the Yang-Mills Chern-Simons action is always imaginary in euclidean 
space. The question has to do with what is being continued when one goes from 
Minkowski to euclidean space. Usually, it seems obvious that in going from 
Minkowski to euclidean space the tangent space group of general relativity goes 
from SO(2,1) to SO(3). However, in Yang-Mills theory one does not make a Wick 
rotation on the gauge group when one rotates from real to imaginary time. 

Possibly, we should not think of Z x R 1, the manifold on which we have worked 
in this paper, as space-time, but rather as an auxiliary space analogous to the world 
sheet in string theory. The idea would be that space-time is reconstructed from data 
on Z x R 1 just as in string theory space-time is reconstructed from a world-sheet 
theory. The idea of this reconstruction is that a flat ISO(2,1) connection on ~ x R 1 
is equivalent to a homomorphism of the fundamental group of Z into ISO(2,1). The 
image of the fundamental group under this homomorphism is a subgroup F of 
ISO(2,1), and we try to identify spacetime with X/F, with X being Minkowski 
space. If we think of Z X R 1 as a "world sheet", and the dynamical variables el, o~j 
as tools in reconstructing space-time, then as there is no metric on the world surface 
Z × R x, there is no natural notion of whether this space has "Minkowski or 
euclidean signature". It does make sense to ask whether space-time has Minkowski 
or euclidean signature. The minkowskian case is the case, considered in this paper, 
in which ei, ¢0j are a gauge field of ISO(2,1) or one of its generalizations SO(3,1) or 
SO(2, 2). If we actually want to do euclidean gravity, meaning gravity with euclidean 
space-time, then those groups would be replaced with their analytic continuations 
ISO(3), SO(4), or SO(3,1), depending on the sign of the cosmological constant. 

A closely related question is whether the parameters in the gravitational la- 
grangian should be quantized, by analogy with the corresponding phenomenon in 
gauge theories [22]. This is inevitably related to the question of whether the 
lagrangian is to be real or imaginary, since it is only imaginary terms in the action 
that might be sensibly quantized. The standard Einstein action I of eq. (2.22) is 
ordinarily real in "euclidean space", and we would like to preserve this. Thus, it 
should not be quantized. The more exotic term I '  of eq. (2.27) is less familiar and 
we are willing to believe that it should be quantized and perhaps should appear in 
the lagrangian with an imaginary coefficient. To investigate this, we note that 
quantization depends on ~r3(G), where G is ISO(2,1) or one of its generalizations; 
and here there seems to be a big difference between Minkowski space-time and 
euclidean space-time, since for instance ~r3(ISO(2,1)) is zero, but %(ISO(3)) - Z. In 
fact, for all of the minkowskian groups and all of the euclidean groups except SO(4), 
there is no topological reason to quantize the ordinary Einstein action (2.22), and it 
can be given the usual real coefficient if we are considering the euclidean case. 
(SO(4) is from this point of view a mysterious exception that we will not try to 
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elucidate.) However, for the minkowskian group SO(3, 1) and all of the euclidean 
groups, the exotic interaction I '  is quantized and must appear in the lagrangian with 
an imaginary coefficient. 

4.2.1. Global Anomalies and Classical Singularities. This whole discussion of 
global anomalies and quantization of couplings in 2 + 1 dimensional gravity may 
seem rather bizarre. When 2 + 1 dimensional gravity is written in terms of the 
metric (rather than vierbein and connection), it is manifest that there are no such 
anomalies. So what is going on? Actually, the crucial point is that (as discussed at 
the end of the introduction to sect. 2), in formulating 2 + 1 dimensional gravity in 
terms of the vierbein and spin connection, we have dropped the requirement that 
the vierbein should be invertible. Though the non-invertible vierbeins are of "mea- 
sure zero", adding them changes the topology of field space (and of the space of 
gauge transformations) and permits the occurrence of global anomalies that other- 
wise would have been absent. In fact, the four-dimensional "instanton" studied in 
ref. [10], which has a classical singularity (a degenerate vierbein) at its core, is 
precisely the configuration which is manifested in three space-time dimensions in 
terms of global anomalies. 

4.3. UNITARITY 

Some of the fundamental puzzles in the canonical formalism of quantum gravity 
have to do with the physical interpretation of the Wheeler-de Witt wave function. 
The following may illustrate some of the questions. Let PBA be the probability 
amplitude for observing a final state B after having observed an initial state A (the 
initial and final observations being on some specified spacelike hypersurfaces). It is 
a fundamental fact of life in ordinary field theory that in a sequence of observations 
(fig. 1) one has 

PeA = EPcB. i%A. (4.1) 
B 

Fig. 1. A two step transition from an initial state A to a final state C via an intermediate state B. 
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In ordinary quantum mechanics this is essentially the statement that 

e -m(tl+t2) = e -iHt2" e iHtl. (4.2) 

In quantum gravity it appears problematical to formulate such a relationship. On 
the right-hand side one would need an integral over the elapsed time from A to B, 
and another integral over the elapsed time from B to C. It is hard to see how this 
can agree with a single integral over elapsed time from A to C, required on the left. 

Nevertheless, there are generally covariant field theories that behave as in eq. 
(4.1). An example is provided by Donaldson/Floer  theory in 3 + 1 dimensions; for 
a discussion in physical language see ref. [28]. Another, perhaps even more surpris- 
ing example is 2 + I dimensional gravity. For, being equivalent to an ordinary gauge 
theory, 2 + 1 dimensional gravity certainly obeys such relations as eq. (4.1). I have 
no idea whether (i) despite appearances, all generally covariant theories can be 
formulated in such a way as to ensure the validity of eq. (4.1); or (ii) the validity of 
such a formula should be viewed as an order parameter distinguishing an unbroken 
phase of general relativity (which would include Donaldson theory and 2 + 1 
dimensional gravity) from the ordinary broken phase of general relativity that we 
experience in the real world. 

4.4. O B S E R V A B L E S  

Another interesting question has to do with the observables in quantum gravity. 
The whole question of observables in quantum gravity is rather thorny. In 2 + 1 
dimensional gravity, there is a peculiar class of observables that would not have a 
good counterpart in any other dimension. Let C be a circle in space-time. In three 
space-time dimensions, a circle in space-time may be "knotted".  

Let us denote as A, the gauge field, with gauge group ISO(2,1), SO(3,1), or 
SO(2, 2), that is obtained, as in eq. (2.10), by combining together e and t0. Let ~ be 
a representation of one of those groups (a finite-dimensional representation or in 
general any representation such that the observable defined below makes sense in 
the quantum theory). For every circle C in space-time and every representation ~ ,  
define 

O~(C) = Tr~Pexp  ~cAi dx i. (4.3) 

The symbol Tr~ represents a trace in the ~ representation, and P e x p ~ A i d x  ~ 
denotes the holonomy of the connection A around the loop C. 

Because of general covariance, expectation values 

/  44) 



E. Witten / 2 + 1 dimensional gravity" 75 

should formally depend on the topological classes of the links C~. Any two 
unknotted circles on the three sphere are equivalent, for example. One might 
wonder whether such observables can actually be expected to make sense. A priori 

one might well have been inclined toward a negative answer, but some recent 
developments relating Yang-Mills  theory to knot theory [18] strongly suggest a 
positive answer. If the equivalence that we have proposed between quantum gravity 
in 2 + 1 dimenisons and Chern-Simons gauge theory with gauge group ISO(2,1), 
SO(3,1), or SO(2, 2) is really correct, then the expectation values (4.4) should be the 
analogues for these groups of the Jones polynomials [29] of knot theory. This would 
be a 2 + 1 dimensional version of the possible relation between quantum gravity and 
knot  theory conjectured in ref. [17]. 

4.5. IS 2 + 1 DIMENSIONAL GRAVITY RELATED TO THE VIRASORO DISCRETE SERIES? 

Another  fascinating cluster of questions concerns an important motivation for the 
present work which so far we have not even mentioned. 

Some recent developments [18] suggest that important classes of conformally 
invariant quantum field theories in 1 + 1 dimensions can be obtained from generally 
covariant quantum field theories in 2 + 1 dimensions. The Virasoro discrete series 
with c < 1 are a very distinguished class of 1 + 1 dimensional conformally invariant 
theories. Therefore, it seems natural to suspect that some distinguished generally 
covariant theories in 2 + 1 dimensions should underlie the Virasoro discrete series. 

What  2 + 1 dimensional generally covariant theory is more distinguished than 
gravity itself? So one is tempted to believe that the Virasoro discrete series can be 
understood by quantizing general relativity in 2 + 1 dimensoins. 

How close to this goal have we come? We have seen that 2 + 1 dimensional 
gravity is closely related to the Chern-Simons gauge theory of certain groups. In 
view of the results of [18], this means that 2 + 1 dimensional gravity is closely 
related to current algebra theories in 1 + 1 dimensions with these symmetry groups. 
If  we work in three-dimensional euclidean space and the cosmological constant is 
positive, then the group that arises is SU(2) × SU(2). It is certainly true, in view of 
the G K O  coset space construction, that SU(2)×  SU(2) current algebra is closely 
related to the Virasoro discrete series. But in this paper we have not uncovered a 
rationale for modifying the SU(2) × SU(2) theory with the coset space construction. 
If  such a rationale does exist, it is probably related to the shakiest part of our 
construction, which is that we took the phase space to be the moduli space of all 

flat G connections without imposing any condition to avoid singularities. 
4.5.1. String Theory Interpretation of  2 + 1 Dimensional Gravity. Whether or not 

2 + 1 dimensional gravity is related to the Virasoro discrete series, it certainly looks 
temptingly like it has a string theory interpretation. For, according to ref. [18], the 
Chern-S imons  theories to which 2 + 1 dimensional gravity are equivalent are in 
turn closely related to certain 1 + 1 dimensional conformal field theories. This latter 



76 17,, Witten / 2 + 1 dimensional gravity 

relationship comes essentially from interpreting the quantum Hilbert spaces in 2 + 1 
dimensions as the spaces of conformal blocks in 1 + 1 dimensions; the quantum 
Hilbert spaces of the 1 + 1 dimensional theory can also be obtained by quantizing 
the 2 + 1 dimensional theory on a manifold with boundary. So we have come upon 
a peculiar relative of what one aims to do in string theory: a theory of space-time 
geometry (2 + 1 dimensional gravity, in this case) can be coded in a 1 + 1 dimen- 
sional conformal theory. 

4.5.2. Thickening The Moduli Space of Riemann Surfaces. On noting that 2 + 1 
dimensional gravity makes sense, and is "trivial", just like the 1 + 1 dimensional 
theory, one might think of imitating the role of 1 + 1 dimensional gravity in string 
theory. However, this is presumably naive. Just as unexpected as the role of 1 + 1 
dimensional gravity in string theory may appear, so the role in physics of 2 + 1 
dimensional gravity - if there is any role - is likely to be quite unexpected. 

In speculating about possible relations between 2 + 1 dimensional gravity and 
string theory, it is interesting to note that the moduli spaces that appear in 2 + 1 
dimensional gravity are closely related to moduli space of Riemann surfaces. It is 
for this reason that the study of hyperbolic three-dimensional geometry has been 
closely connected with the study of Riemann surfaces. (An introduction can be 
found in ref. [30].) It is intriguing to conjecture that suitable moduli spaces of 
hyperbolic three geometries will enter string theory in the future as thickened 
versions of an ordinary Riemann-surface moduli space. The behavior of a three 
geometry in the far past and the far future may give separate Riemann-surface 
moduli for left- and right-moving modes. There is some heuristic indication that 
such a separation is needed in string theory [31]. 

4.6. GEOMETRICAL APPLICATIONS OF QUANTUM GRAVITY 

In this paper, we have considered 2 + 1 dimensional gravity from a physical point 
of view. However, if it is really possible to generalize the solution of the Yang-Mills 
Chern-Simons theory to non-compact groups and understand quantum gravity on 
general three manifolds, this is likely to have important implications for geometry. 
The most important case for geometrical applications, in view of the results of 
geometers [30], is likely to be the case of euclidean signature with negative cosmo- 
logical c o n s t a n t -  the relevant gauge group is then SO(3,1). In this case, the 
lagrangian is 

1 ik 
I =  ~ I +  --I'gTr ' (4.5) 

where I is the standard Einstein action (2.22) with cosmological constant, and I '  is 
the exotic action (2.27). In keeping with the above discussion of quantization of 
couplings, the standard action 1 appears with a real coefficient, which we have 
written as I /h;  here h is Planck's constant. But - again in view of the discussion 
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a b o v e -  I '  has a quantized coefficient, with k an integer. Once h is explicitly 
introduced in this way, one may as well set X = 1 in eq. (2.22). Now one wishes to 
study the Feynman integral over all choices of field variables on an arbitrary three 
manifold M, to get the "part i t ion function" defined by 

Z ( M )  = fDeD~o e -i. (4.6) 

Understanding quantum gravity on a general three manifold would mean under- 
standing how to compute Z(M) as a function of the variables h and k that appear 
in the lagrangian. 

The connection with classical geometry should be particularly striking in the limit 
of small h. Presumably, though this is part of what one would want to investigate, 
the small-h limit of the partition function would be dominated by the classical 
solution of most negative action. According to the standard conjectures about three 
manifolds, almost all interesting (irreducible) three manifolds are "hyperbolic",  and 
the action (4.5) would have a unique non-trivial critical point of most negative 
action up to gauge transformation. The action for this critical point is - ( V / h  + 

2~r ikC) ,  where V and C are known as the volume and Chern-Simons invariant of 
the hyperbolic three manifold. The small-h limit of the partition function would be 
Z - e x p ( V / h  + 2~rikC) (up to a power of h), so that the classical invariants V and 
C could be extracted from the asymptotic behavior of Z, if indeed it is possible to 
define the partition function Z as an invariant of three manifolds. Notice that, since 
quantum gravity can be formulated on three manifolds that are not necessarily 
hyperbolic, the scenario just sketched would be impossible if the hyperbolic volume 
were well defined only for hyperbolic three manifolds. Happily, Gromov has shown 
that the definition of the hyperbolic volume can be extended to arbitrary three 
manifolds; and his definition seems rather like it is related to the classical limit of 
quantum gravity. 

I would like to thank M.F. Atiyah and W. Thurston for assistance on some 
topological matters. I would also like to thank J. Horne for a critical reading of an 
earlier draft of the paper, and T. Banks for some stimulating questions. 
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