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The structure constants of the “algebra” of constraints of a parametrized field theory 
are derived by a simple geometrical argument based exclusively on the path independence 
of the dynamical evolution; the change in the canonical variables during the evolution 
from a given initial surface to a given final surface must be independent of the particular 
sequence of intermediate surface used in the actual evaluation of this change. The 
requirement of path independence also implies that the theory will propagate consistently 
only initial data such that the Hamiltonian vanishes. The vanishing of the Hamiltonian 
arises because the metric of the surface is a canonical variable rather than a c-number. It is 
not assumed the constraints can be solved to express four of the momenta in terms of the 
remaining canonical variables. It is shown that the signature of spacetime can be read 
off from the commutator of two Hamiltonian constraints at different points. The 
analysis applies equally well irrespective of whether the spacetime is a prescribed 
Riemannian background or whether it is determined by the theory itself as in general 
relativity. In the former case the structure of the commutators imposes consistency 
conditions for a theory in which states are defined on arbitrary spacelike surfaces; 
whereas, in the later case it provides the conditions for the existence of spacetime- 
“embeddability” conditions which ensure that the evolution of a three-geometry can 
be viewed as the “motion” of a three-dimensional cut in a four-dimensional spacetime 
of hyperbolic signature. 

1. INTRODUCTION 

Even in flat spacetime it is useful to set up a field theory in such a way that field 
states are defined on a general spacelike surface, the reason being that the rela- 
tivistic invariance of the Hamiltonian formalism becomes manifest [l-3]. If, 
instead of flat spacetime, we work with a nonflat Riemannian background then 
the use of a curved spacelike hypersurface is unavoidable for the simple reason 
that three-dimensional planes do not exist in general. Moreover, since general 
relativity has taught us that spacetime is not flat we may look at the possibility 
of using flat surfaces as a mere accident peculiar to Minkowski space, and it 
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would seem rather unnatural to base a general dynamical theory on such a 
degenerate case. 

When setting the ground for a Schroedinger type quantization on curved surfaces 
it is natural to look at the Hamilton-Jacobi equation, Hamilton’s principal 
functional S being the classical analog of the quantum wave functional #. The 
observation that in nonrelativistic dynamics the Hamilton-Jacobi equation is a 
partial differential equation of first order in the dynamical coordinates and also 
in the time variable led Dirac [4] to the conclusion that we should build a dynamical 
theory in which the variables describing the surface are treated on the same footing 
as the dynamical coordinates, and he developed a generalized Hamiltonian 
formalism based on this idea. 

In Dirac’s formalism four extra dynamical variables (“surface variables”) are 
introduced in addition to the variables describing the field. In the case of a field 
theory in Minkowski space these surface variables are most simply taken to be the 
four Lorentzian coordinates of a generic point on the surface. There is, however, 
no need to restrict oneself to Lorentzian coordinates; any curvilinear system of 
coordinates, fixed once and for all, will do the job. The same procedure applies. 
as well. if the Minkowskian background is replaced by some prescribed Riemannian 
background. 

The introduction of four redundant variables brings into the Hamiltonian 
formalism four constraints, since the momenta cannot be solved back as functionals 
of the coordinates and velocities. If the surface variables are denoted by yA(x) 
(A = 0, 1, 2, 3) and their conjugate momenta by TV (here x = (xl, x2, 9) are 
curvilinear coordinates on the surface), then these constraints have the form 

PA SE rA + KA = 0. (1) 

where KA is independent of the rB but depends in general on the yA and the field 
canonical variables. The important point now is that the four quantities XA carry 
all the dynamics of the system at hand. The change in any functional F of the 
canonical variables (field and surface variables), induced by a deformation of the 
surface y”(x) + y”(x) + 8yy”(x) is given by the P.B. of F with the LJamiltonian 

6H = 1 d3x Q+(x) &(x). (2) 

Also the Hamilton-Jacobi equations are obtained by replacing in (1) rr,, by SS/SyA, 
with an analogous prescription for the field variables. 

A more convenient form of the theory is obtained if the four constraints (1) are 
projected into one component X’ orthogonal to the surface and three tangential 
components <Zr by means of the definitions 
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where nA is the unit normal to the surface. We then get a system of constraints 
equivalent to (2), namely 

2” = rl + KL = 0, (4.a) 

XT = rrr, + K, = 0. (4.b) 

When expressed in terms of X1 and XT the Hamiltonian (2) takes the form 

where Syl = enA SyA(c = nBnE) is the normal component of the deformation, and 
Syr = gV8 SyA yf’, is the tangential part. The decomposition of a deformation in 
tangential and orthogonal parts is illustrated in Fig. 1. 

FIG. 1. Deformation of a coordinatized surface. Starting from a given surface (I on which a 
coordinate system (x) is defined one goes to an infinitesimally neighboring surface O’ by means 
of a deformation 6((x) = 8P-(x)n(x) + Q?(x) (a/W). Note that the deformation defmes U’ not 
only in the geometrical sense but also sets a coordinate system on O’ by the prescription of giving 
same coordinates to the points at the tail and at the tip of the deformation. In the terminology 
of Amowitt, Deser, and Misner [6], St1 is St times the lapse function and Sf’ corresponds to St 
times the shift vector. 

The advantage of the projected version (3) of the constraints is twofold. First of 
all, we replace the highly arbitrary description of the motion in terms of the 
coordinates yA by a description in terms of deformations of the surface parallel to 
itself (governed by XV) and orthogonal to itself (governed by XL) which has an 
invariant geometrical meaning. Secondly, the change in the field variables under a 
displacement of the surface parallel to itself amounts only to the response of the 
field to a change of coordinates in the surface and has no dynamical content, 
being determined completely by the transformation character of the field. We 
separate in this way the part of the problem that is trivial from the truly dynamical 
part which is contained in %” . Moreover, when the constraint XL = 0 is imposed 
as a restriction on the Hamilton-Jacobi principal functional S in the classical 
theory or on the state functional $ in the quantum theory then, thanks to Eq. (6.a), 
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the constraints Xi = 0 follow as a consequence of XL = 0, as it has been shown 
by Moncrief and Teitelboim [5]. This situation is to be contrasted with the 
formulation based on Eq. (1) in which the two aspects of the problem are mixed 
and one has to deal with four equations of the same degree of complexity. 

The form of 2” and Zr appearing in the Hamiltonian (5) varies, of course, from 
theory to theory, but there is one important feature common to all such OX;, 
namely the fact that the P.B. of any two of them is a linear combination of the 2; 
themselves and this linear combination is the same for all theories. What we are 
emphasizing is not the fact that the P.B. of any two constraints is a linear combi- 
nation of the constraints (“closure”)-this merely guarantees the preservation of 
the constraints during the evolution of the system. What is remarkable is that the 
coefficients in this linear combination (“structure constants”) are universal. This 
fact has been established by Dirac [4] for the case of a parametrized field theory in 
Minkowski space. Starting from the form (1) of the unprojected constraints 2, he 
has shown that the ,Fa obey the following commutation rules 

[X;(x), TifL(X’)l = wyx) + mx’>) S,,.(x. x’), (6.a) 

[.xT (x), &(x’)l = .%(x1 6. r& x’>, (6.b) 
[Xi(x), 2F~(X’)] = (cep(x’) 6.,(x, x’) -t .X,(x) 6*,(x, x’)). (6.~) 

Dirac’s procedure suffers from two shortcomings; first of all, the geometrical 
meaning of the consistency conditions (6) (especially (6.a)) is not clear. Second, his 
whole procedure depends crucially on the fact that the .jI”, are obtained as 
projections of some 2”‘s of the form (1). This is actually satisfied for a theory that 
was originally b‘nonparametrized” and in which the surface variables were intro- 
duced as canonical variables aposteriori. However, there is one very important case 
in which the theory is “already parametrized,” namely, a theory in which the 
Hamiltonian is given in the form (5) from the very beginning. This is the case of 
general relativity [6]. Nevertheless, we can take the .%‘i of general relativity and 
compute the P.B. of any two of them. These can be found in a paper by Dewitt [7] 
and the result is exactly (6). There are two possible reactions to this fact: (a)The 
coincidence in the P.B’s is telling us that there exist some canonical transformation 
that puts the constraints of general relativity in the form (4) so that Dirac’s 
derivation (generalized to a Riemannian space) applies also to this case. In other 
words, since Dirac’s derivation of (6) is based so strongly on the form (4) of the 
constraints, we would try to reverse the argument and prove from (6) that the .@A 
are of the form (4). If this is the case, it would be a very important result since the 
main trouble in the canonical quantization of general relativity is that surface 
variables and field variables are inextricably mixed [8, 91. The other possible 
reaction is: (b) Eqs. (6) can be derived without reference to the form (4) of the 
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constraints and, therefore, the fact that the P.B’s of the constraints are the same for 
general relativity and for “deparametrizable” field theories is not telling us that 
general relativity can be deparametrized (i.e., that surface variables and field 
variables can be separated in a clean way, as in (4)). 

We shall derive in this article Eqs. (6) without any reference whatsoever to a 
particular form [like (4)] of the constraints. The only assumptions will be (i) the 
constraints are closed (otherwise the theory is inconsistent to start with) and 
(ii) Hamilton’s equations are integrable, that is the change in the canonical 
variables during the evolution from a given initial surface to a given final surface 
is independent of the particular sequence of intermediate surfaces used in the 
actual evaluation of this change. (A consistency requirement termed by Kucha? [lo] 
“path independence of dynamical evolution.“) 

This way of deriving Eqs. (6) solves the two shortcomings mentioned previously; 
it provides a clear geometrical interpretation for these P.B. relations, and it shows 
that alternative (b) is the correct one; the validity of Eqs. (6) for general relativity 
does not provide evidence for the existence of a canonical transformation that 
separates dynamical variables from surface variables in gravitation theory. We 
will return in some detail to the case of general relativity in Section 4; let it be said 
for the moment that in this case Eq. (6.a) (which is the most interesting of Eqs. (6)) 
is the condition for the existence of spacetime; it guarantees that the evolution of 
the dynamical object of the theory (three-dimensional geometry) can be represented 
as the “motion” of a three-dimensional cut in a four-dimensional manifold of 
hyperbolic signature. 

2. INTEGRABILITY 

We assume thlt we have a Hamiltonian field theory in which states are defined 
on an arbitrary spacelike surface. By “surface” we shall understand a surface in 
the geometrical sense plus a system of coordinates (xl, x2, Xs) defined on it. The 
surfaces will be assumed to be embedded in a four-dimensional Riemannian 
spacetime. The signature of the time direction will be left open and denoted by E 
(the spacetime metric will then have signature (E, +, +, +)). 

In the generalized Hamiltonian formalism of Dirac [4] the change in any 
functional F of the canonical variables under a deformation 6~” of the surface 
(recall that Greek indices run over cy. = I, 1, 2, 3, with 1, 2, and 3 corresponding 
to the coordinates xc on the surface) is given according to (5) by 

6F = j- dSx [F, 8y” Sal, (7) 



CONSTRAINTS AND SPACETIME 547 

I 1 v 
0 4 8 12 

0 4 8 12 

-b- 

jv-axis before / 
-deformation 

0 4 8 12 

FIG. 2. Deformations do not commute. When two deformations St (solid arrow) and ST 
(broken arrow) are performed in succession starting from a given surface D we get different results 
depending on the order in which the deformations are performed. Recall in this context that 
“surface” here means “coordinatized surface.” That is to say, two surfaces that differ only in the 
way in which their points are labelled (“active coordinate transformation”) are considered to be 
different. (a) illustrates the noncommutativity of two orthogonal deformations for the simple 
case of one dimensional “planes” embedded in a two-dimensional Euclidean (C = +I) “space- 
time.” The coordinate x on the initial surface is proportional to the linear distance measured 
along the surface. The deformations are given by Se = (6 - x/4)n and 6q = $(l + x/4)n. If  St is 

performed first and 6~ afterwards we go from (I to (I’. When the order is inverted we go instead to 
0”. There is a nonzero vector SC (heavy arrow) that deforms O’ onto 0”. In the limit of infinitesimal 
St and 6~ the deformation SC is tangential to o’ and is given by SC = --(21/8)(a/&~) (Eqs. (25)). 
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and at the same time the constraints 

xa = 0 (4) 

hold. Note that on account of (4) the deformation 6~” can be taken outside of the 
P.B. in (7) even if it depends on the canonical variables without changing 6E 

Consider a given surface CJ and go to an infinitesimally altered surface a1 , say, 
by a deformation 6p. Go then from o1 to another surface u’ by a second defor- 
mation 67~. If the two deformations are performed in reversed order, we will arrive 
at a final hypersurface u” which will be in general different from C, i.e., normal and 
tangential deformations are not “holonomic.” This feature translates, when 
expressed by means of the corresponding generators, into a lack of commutativity. 
The situation is illustrated in Fig. 2. Since u’ and a” are in general different, there 
is a SC that deforms u’ into u”. This “compensating deformation” will have the 
form 

as will be explicitly verified in Section 3. 
Note that exchanging St and 6r] corresponds to exchanging u’ and u” which 

amounts to an inversion of S<. It follows that 

/c&(x”; x, x’) = -l&(x”; x’, x). (9) 

Now, by repeated use of (7) we find the change 

WI = F + s d3x [F, @P(x) + W(x)) K(x)] 

+ 1 @x 1 c-h W’, VW %(x’)l, W(x) X(x)], (10) 

(b) illustrates, with the same conventions used as in Fig. (2.a), the noncommutativity of a normal 
deformation St = (1 + (7/12)x)n and a tangential deformation 61 = 4(a/ax). This time the 
compensating deformation St is purely normal in the limit of infinitesimal 86 and 61. Equations 
(25) yield for its value St = -(7/3)n. (c) shows that the lack of commutativity of two tangential 
deformations (“active coordinate transformations”) in an Euclidean two dimensional plane 
(the page). This feature has nothing to do with the embedding of the surface in a higher dimen- 
sional space and does not require either the introduction of a metric, in contrast with the situation 
in Figs. (2.a) and (2.b). A point (x, y) is mapped onto (x, y)’ if Sf if performed first and 6q after- 
wards. If  the order is reversed (x, y) is mapped instead onto (x, y)“. The compensating deformation 
S{ maps (x, y)’ onto (x, y)“. The deformations considered are St = 3(x - 1)(8/W and 67 = 
3(a/%), which yields via Eqs. (29, SC = -2(a/Q). 
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in an arbitrary functional F of the canonical variables (neglecting higher order 
terms). Here, F and ZZ are evaluated on the original surface CJ. 

Next we interchange the deformations 67” and Sp, subtract the resulting equation 
from (IO), and use Jacobi’s identity to obtain 

F[u”] -- F[o’] = j d3X j d3X’ [F, [S&x) K(x), &70(x’) 3$(x’)]]. (11) 

On the other hand, by the very definition of Sj, we have 

F[u”] - F[a’] = 1 d3xn [F, 6&x”) Xy(x”,]. (12) 

The theory will predict a consistent dynamical evolution if and only if (11) and 
(12) are equal to each other for arbitrary S.$ and 67. After taking into account (8) 
this requirement becomes 

[F, [3Ec&(x), q(x’)] - j d3.u” K&(X’; X, .u’) e(X”)] = 0. (13) 

There is a subtlety that has to be considered now. Since the canonical variables 
are constrained we are entitled, a priori, to impose (13) only when the constraint 
equations (4) hold, i.e., as a weak equation in Dirac’s terminology. However, such 
a requirement is enough to conclude that [Za , =?‘?$I - j Kzflv appearing in (13) 
vanishes strongly. The argument runs as follows: If [CRE , PO] - J- K$%y depends 
on at least one canonical variable, we can always find a variable canonically 
conjugate to this expression. Taking for the arbitrary F in (13) precisely that 
variable would violate (13) by making its left side a a-function which is a nonzero 
“c-number” (i.e., it is independent of the canonical variables)-a quantity that 
does not vanish, even weakly. We conclude then that [~rtO, , .X,] - j K&K is a 
c-number. Observe now that this c-number vanishes weakly ([& , ZB] has to be 
a linear combination of the XY, otherwise the constraints would not be preserved) 
and that, consequently, it is identically zero, by the very reason that it does not 
depend on the canonical variables. 

We have thus proved that 

[sa(x), 2&(x’)] = j d3x” K;&X”; X, x’) %(x”), (14) 

with K& defined by (8). Before leaving this point, we remark that the closing 
relation (14) implies, in turn, that the theory will propagate consistently only 
such initial data for which the constraints (4) hold. This necessity of the vanishing 
of the Hamiltonian follows [once (14) is accepted] from the fact that the metric 
of the surface is a canonical variable rather than a c-number. See the note added 
in proof. 
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We have seen that the structure constants K:@ are determined by a purely 
geometrical construction, without any assumption about the form of the Za . We 
turn now to their explicit evaluation. 

3. EVALUATION OF STRUCTURE CONSTANTS 

We will determine in this section the “compensating deformation” S&’ as a 
functional of the elementary deformations Se and 67 and will then identify the 
structure constants K$ from Eq. (8). 

We have the fundamental relations 

g 
AB = EAB + grsy:y; ) (15) 

nAnA = E, W-9 
A 

nAy,r - - 0, (17) 

between the spacetime metric g AB, the spacetime coordinates y”(x) of a point on 
the surface, the metric on the surface g’“(x) and the unit normal nA(x). 

The components SyA of a deformation can be expressed in terms of the associated 
6~” by means of (15) as 

sy* = Syl n* + Sy’ yf’, . (18) 

Start from a surface u defined by yA = y”(x) and go to a slightly different surface 
by means of a deformation SP. The equation of this new surface will be 

YA = y”(x) + w- nA + w  y:‘T , (19) 

and its normal will differ from K@(X) by a small amount anA given by 

SnA(x) = s 8x’ ~YB(x’) snA(x) (So” nB(x’) + Sg’(x’) y:(x’)). 

This seemingly fancy way of writing 6nA by means of the functional derivative 
6nA/6yB shows explicitly the dependence of 6nA on Sp, which is a very useful 
feature when we replace in some formulas Sgll by 6~” and subtract these formulas 
from each other, as we shall do later. The derivative SnA/6yB can be calculated 
from (16) and (17), and it is found in the Appendix to be given by 

6n “(x) 
= -b??%B~& x’) + gCD,B&? - ihAnD) % x?>, (zl) 

where the coefficient of 6,(x, x’) is evaluated at the point x. 



CONSTRAINTS AND SPACETIME 551 

Go now from the surface defined by (19) to a second surface 0’ by a defor- 
mation 6~. The equation of u’ will be given by an equation similar to (19) withy’(x) 
replaced by y”(x) + 8&A + Spy:‘, ; Sp replaced by 6~~; and nA replaced by 
nA i- 6nA with 6nA given by (20). This gives 

A 
Y -= yA(x) + (Sf’ + S?f) nA + t,sp -~ S7f) y: 

f S$ j d3x’ $$$ (S(‘(x’) n?x’) .-. Sg”(x’) yfJx’)) (22) 

If the deformations are performed in opposite order (that is, first 67 and after 
that St) we go from the initial surface u to a final surface a”, the equation of which 
has the form (22) with S.$ and 6~7 interchanged. The components SC” of the defor- 
mation that transforms u’ into U” are, therefore, obtained by subtracting from (22) 
the same expression with St and ST interchanged. After this is done one needs only 
to project, in order to get the quantities of interest 

(Actually, for practical purposes it is better to project first and subtract afterwards.) 
By making use of the identities 

n& = - igcD,BncnD.v~, 

B B 
nB.ry,s = nB,s~,r = --nB~t,, 

which follow from (16) and (17), we get finally 

sg’ = -(S7f St+ - sy S7&), 

sg’ = EgYs$ sg; - a$’ sqg + (Sf” srf* 

According to (8) we have to write (25) in the form 

(24.a) 

(24.b) 

(25.a) 

(25.b) 

sc’(x”) = j d3x j d3x’ K&(X”; x, x’) 8.$@(x) 8$(x’), (26.a) 

sg’(x”) = j d3x j d3x’ K&(X”; X, x’) 8?(x) s&x’), (26.b) 
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in order to identify K,$ . This yields 

&(X”; X, X’) = -K&(X”; X’, X) = 6(X”, X) 6.,(X”, X’), 

K;b(X’; X, X’) = -Kia(X”; X’, X) 

(27.a) 

= 8(X”, x) 6,,(x”, x’) a,7 - 8(x”, x’) &,b(X”, x) aa*, (27.b) 

KII(Xn; X, X’) = -K;*(X”; X’, X) 

= q?(x”)@(x”, x’) 6,,(x”, x) - 8(x”, x) 8,$(x”, x’)), (27.~) 

all others being zero. 
Introducing finally expressions (27) into Eq. (14) one gets for the P.B.‘s of any 

pair of constraints, 

wh% Kw)l = -4@“(X) + *‘cc’) 8,&, x’), (28.a) 

l.-%(x), KLCGI = X(x) ~A& x’>, (28.b) 

ww, XWN = ww ~*s(x, x7 + %W ~A-% 0. (28.~) 

4. CONCLUDING REMARKS 

We have derived the P.B. relations (28) from a single requirement-integrability 
of Hamilton’s equations. Equations (28.b) and (28.~) are the same as (6.b) and (6.c), 
and they are not very surprising. As it is well known, (28.~) says that the Xr are the 
generators of coordinate changes in the surface, as it should have been expected 
by observing that setting 6~’ = 0 in the Hamiltonian (5) corresponds to a motion 
of the surface parallel to itself. When the constraint Yr = 0 is imposed as a 
restriction on the Hamilton-Jacobi functional S in the classical theory or on the 
wave functional # in the quantum theory, the resulting equation says only that S 
and $ do not depend upon the parametrization x’ of the surface. Equation (28.b) 
says that riL is a scalar density; this comes from the fact that we have written the 
Hamiltonian (5) as an integral over d3x instead of as an integral over the proper 
volume g1i2d3x. Although nothing could prevent us from adopting this last 
convention, it would be a rather awkward thing to do, because gl/z depends on the 
canonical variables and, when taking P.B.‘s, this would lead to extra terms which 
would unnecessarily complicate the derivations. 

The really interesting equation is (28.a). Note first of all that it involves explicitly 
the signature E. This means that we can read off immediately the signature of 
spacetime from this equation. (This point is quite independent of the deeper 
difficulties in formulating a Hamiltonian formalism in an elliptic spacetime [l]). 
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This feature is of particular interest in the case of general relativity, because the 
usual four-dimensional formalism of Einstein’s equations does not contain any 
reference to the signature; whereas, Eq. (28.a) already implies that spacetime will 
have hyperbolic signature through the fact that the X; of general relativity satisfies 
(28.a) with E = - 1. (This has been fed into the Hamiltonian formulation by using 
the Gauss-Codazzi equations with E = - 1 when going to a 3 + 1 splitting.) 

When working in a parametrized field theory on a given background, Eq. (28.a) 
ensures, as it should be clear from the derivation in Sections 2 and 3, that the 
dynamical evolution is path independent. In the case of general relativity the 
interpretation is a little more delicate, since there is no background, but the 
spacetime is determined by the theory itself as a stacking of 3-geometries. At the 
beginning of Section 3 we have emphasized an assumption which is rather trivial 
when working on a background but which is not trivial at all in general relativity. 
namely, the assumption that all the surfaces are embedded in a four-dimensional 
spacetime. This statement is expressed mathematically by Eq. (28.a) for general 
relativity, and it is the requirement that is far from being easy to satisfy (in contrast 
to (28.b) and (28.~)). In fact, Eq. (28.b) restricts rather severely the form of -FL . 
and it should play an important role in any derivation of general relativity based on 
“first principles.” It is appropriate to quote in this context John Wheeler [l I]: 

I f  one did not know the Einstein-Hamilton-Jacobi equation 

(2% 

how might one hope to derive it straight off from plausible first principles, without 
ever going through the formulation of the Einstein field equations themselves? . . . The 
central starting point in the proposed derivation would necessarily seem to be “em- 
beddability.” . . . In what way would one violate the “condition of embeddability” if, 
for example, one left the differential operator unchanged in (29) but replaced the term 
13’R by the square or by some other function of the curvature scalar? 

Equation (28.a) is the condition for embeddability (with E =-m - 1 for an hyperbolic 
spacetime). 

In order to derive the form of XL from the embeddability requirement we should 
write a rather general form for %” and then impose the relation (28.a). The right 
side of (28.a) contains only the generators of coordinate changes .fr and is, there- 
fore, known from the tensorial nature of the variables that come into play. For 
example, for pure gravitational field we have [4] & = -27r”,,, . For the gravitational 
field in interaction with other fields there will be extra terms in c.PT which are, in 
each case, uniquely determined. In this more general case of gravitation in 
interaction with other fields, Eq. (28.a) not only guarantees the embeddability 
of the 3-geometries in a spacetime but also ensures that these additional fields 
evolve consistently within this spacetime. 
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A derivation of the form of the XL of general relativity from “first principles,” 
starting from the commutation relations (28) has been given by Hojman, Kuchaf, 
and Teitelboim [12]. 

Note added in proof. We remarked at the end of Section 2 that the closing relation 
(14) [with K$ given by (27)] implies that the dynamical evolution will be path 
independent only when the constraints (4) hold. The argument is rather subtle, 
and we have found it appropriate to outline it here. A further discussion may be 
found in Refs. [12] and [14]. 

The first step is to realize that the change of an arbitrary functional F of the 
canonical variables under a tangential deformation Sg’ is given by 

6F = j d3x[F, XT(x)] Se(x) (37) 

even if &‘? is not constrained to be zero. The point we are stressing here is that (37) 
applies, with Sg’ outside of the Poisson bracket, even when the tangential deforma- 
tion is not a c-number. This follows from the fact that the response of a field 
quantity to a charge of coordinates on the surface (tangential deformation) 
depends only on the numerical value of the deformation and is, therefore, inde- 
pendent of any functional dependence on the canonical variables which Sg’ may 
have. 

The second step is to reconsider carefully, in this context, the reasoning leading 
from (10) to (12). One may assume always (as a particular case) that S&? and 87,9 
in (11) are c-numbers; they can then be safely passed through the P.B.‘s even when 
ZV # 0. Eq. (11) can be then rewritten, taking into account (14) as 

F[a”] - F[o’] = 1 d3x j d3x’ 1 d3x” [F, K:,q(X”; x, x’) sy(x”)] 8p(x) 6q6(x’) (38) 

which, specialized to the case when S[ and 67 are purely normal (the other cases 
are of no interest, leading to identities) reads [recalling (27)] 

Fro”] - F(u’] = s d3x s d3x’ s d3x” [F, KLL (x”; x, x’pqx”)] sp(x) 6qL(x’) (39) 

Observe now what happens to the analog of (12). According to (37) we have to 
write 

F[u”] - F[u’] = 1 d3x” [F, Xr(x”)] Sg’(x”) 

= j- d3x j. d3x’ j. d3x” [F, x(x”)] &(x”; x’) 6t1(x) 8$(x’) (4) 
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The evolution will be path-independent if and only if Eqs. (39) and (40) agree, 
that is when 

[F, KII(X”; X, X’) 3Ea,(X”)] = [F, c%$(X”)] K;I(X”; X, X’), (41) 

which is equivalent to 

[F, K:&‘; X, X’)] sT(X”) = 0. (42) 

Equation (42) would be an identity if K:, were a c-number. The key point, however, 
is that this is not so: I& is not a c-number because it depends on the metric g,, 
[Eq. (27.c)]. This is true, both in Dirac’s parametrized field theories [Section I] 
and in general relativity. Equation (42) can hold for an arbitrary F if and only if 

.TrTT = 0, (43) 

as can be seen by taking F = rrTs (conjugate to g,$) in the case of general relativity, 
or, F = nA (conjugate to the surface variable yA) in the case of Dirac’s parametrized 
field theories. 

The constraints (43) hold on any surface; they must be therefore preserved, 
in particular, under purely normal deformations. This gives by virtue of (5) and 
(28.b) 

2, = 0. (44) 

We have thus shown, by exploiting the requirement of path independence, that 
the closing relations imply the Hamiltonian constraints. The proof depends crucially 
on the fact that the “structure constant” I& is not actually a “constant” but 
depends on the field variables. This is precisely what prevents deformations from 
forming a group, a point discussed in detail in Refs. [12-141. 

APPENDIX. CALCULATION OF 8wQ)/Sy*(x') 

The unit normal nA is defined by the equations 

gABnAnB = E, (16) 

gABnAyf: = 0. (17) 

Since Eqs. (16) and (17) must be preserved when the surface is varied we get 
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Now, we can always write (even if 6nA is not a four vector), 

where 

6nA = WnA + 8nryf:, 

W = ezA W, 

(31) 

6n’ = gpsgAB Sn* yf: . 

(32) 

(33) 

Inserting (3 1) into (29) and (30) we get after using (16) and (17) that 

W = - +egAB,Cn * n B sy”, 

&z’ = -grs(nA 8.d + gAB,CnAyflp %h 

(34) 

(35) 

and now we need only to insert back (35) into (31) to get 

6nD = -gr8nAyfs 8y+ - gAB,C 6yc nA(&nEnD + g’“y.“,y,f& 

which recalling 

reduces to 

BD 
g = l nBnD + g”y:yfs, (15) 

which is equivalent to 

anA _ -- 
~YBW 

-{grsyflnB6,&% x’) + gcD&(gAD - &nAflD) 6(& x?>- (21) 

A lucid discussion of the geometrical meaning of the various terms in Eq. (21) has 
been given by Kuchai? [ 131. 
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