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All known rational conformal field theories may be obtained from (2 + 1 )-dimensional Chern-Simons gauge theories by appro- 
priate choice of gauge group. We conjecture that all rational field theories are classified by groups via (2 + I )-dimensional Chern- 
Simons gauge theories. 

1. Introduction 

The problem of  the classification of  all conformal 
field theories is a useful problem to orient the re- 
search about the more interesting and more impor- 
tant problem of  uncovering the meaning of  confor- 
mal field theory, and, perhaps, string theory. An 
interesting subset of  all conformal field theories are 
the rational conformal field theories (RCFT) .  These 
appear to be more tractable than the more general 
theories because they have only a f in i te  number  o f  
primary fields. In refs. [ 1,2 ] it was noticed that the 
modular  invariants o f  a chiral algebra ~¢ are either 
diagonal or related to the diagonal by an automorph-  
ism of  the fusion rule algebra. This reduces the prob- 
lem of  the classification of  all RCFT's  to the classifi- 
cation of  all chiral algebras. Chiral algebras 
themselves may be studied by characterizing their 
representations in terms of  polynomial equations [3] 
which are similar to those defining groups. Indeed it 
has been widely recognized (see, e.g., refs. [ 3 - 5 ] )  
that quantum groups can be used to generate solu- 
tions o f  these equations. 

A somewhat different perspective on the classifi- 
cation problem has been provided by the remarkable 
observation ofWit ten  [ 6 ] that current algebra in two 
dimensions is equivalent to Chern-Simons  gauge 
theory (CSGT)  in three dimensions and that 
Friedan-Shenker modular geometry [ 7 ] and some of  

J On leave of absence from the Department of Physics, 
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the structure uncovered in ref. [ 3 ] is neatly summa- 
rized by 3D general covariance. In ref. [6] the con- 
nection between two- and three-dimensional theories 
was established only for WZW models [ 8 ] based on 
a simply connected compact  Lie group G. In this let- 
ter we show that all known RCFT's  are equivalent to 
some CSGT thus organizing the entire zoo of  known 
RCFT's  simply by a choice o f  gauge group and cou- 
pling constants. 

The relation between the 3D and the 2D theories 
arises in two (related) ways. First, the states in the 
Hilbert space of  the CSGT on a compact  surface is 
the space ofconformal  blocks of  the two-dimensional 
RCFT [ 6 ]. Second, when quantizing the system on a 
manifold with a boundary,  one can recover all the 
states o f  the chiral algebra and its representations. The 
second viewpoint will be particularly useful in our 
discussion so we begin by rephrasing [9 ] the discus- 
sion at the end ofref. [ 6 ] (based on phase spaces and 
symplectic forms) in lagrangian terms. 

Consider the path integral of  the CSGT on a three- 
manifold Y. Boundary conditions on the gauge fields 
A can be determined by requiring that there are no 
boundary corrections to the equations of  motion. 
Since the variation o f  the Chern-Simons action 

S = k C S ( A )  

= - -  T r (AdA+~A 3) (1.1) 
4~ 

Y 

(where we use the normalization Tr T a T b =  - ½~ab) 

is given by 
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k k 
8S= ~-~ f Tr(SAA) + ~ f Tr(SAF) 

8Y Y 

we must break general covariance on the boundary 
and set one of the components of A (say Ao) to zero ~. 
With these boundary conditions the functional inte- 
gral is invariant only under gauge transformations 
which are one at the boundary. 

Having specified the boundary conditions we can 
evaluate the functional integral. If  Y has a "space- 
time splitting" of the form E × R  where Z is a 
Riemann surface (perhaps with boundary), decom- 
pose the exterior derivative d = d t  O/Ot+~l and the 
gauge field A =A, + A  into time and space compo- 
nents. The CS action becomes 

S = - ~ I T r  
Y 

k 
+ ~ f Tr(A'(~bT+A~) ) " 

Y 

The functional integral over At imposes the con- 
straint F =  0 in the space directions. 

Now let Z = D be a disk. The delta function ~(F) is 
easily solved to give.4= - ~ U U-  ~ for a single-valued 
map U: D × R--, G. Plugging back into the action and 
integrating by parts we find ((0 is the angular coordi- 
nate on 0D) 

S=k Swzw( U) 

=- - -  Tr(U-IOeUU-IOtU) d~0d/ 
4n 

0Y 

+ ~ T r ( U - ' d U )  3, (1.2) 
Y 

which depends only on the boundary values of U. 
Moreover, from this change of variables we obtain 
the Haar measure DA ~(F) =DUso,  factoring out the 
volume of the gauge group we recover the chiral ver- 

~t To speci fy  a non -ze ro  va lue  for  Ao at  the  b o u n d a r y ,  a d d  a t e r m  

( 1 / 4 n )  f 0 v T r  AoA ~ to the  a c t i o n  (A~ is the  c o m p o n e n t  o f  A 

along a direction not parallel to Ao). This boundary term can 
also be derived by demanding that the functional integral de- 
scription of the quantum system coincides with the canonical 
formalism [9 ]. 

sion of the WZW path integral. This lagrangian is in- 
variant under the transformation on the boundary 
U(~o, t)~ff'(~)UV(t). The variance under V is a 
global symmetry because it does not go to one in the 
past and in the future. The gauge symmetry V(t) re- 
flects a redundancy in our parametrization of A by U 
and has to be fixed. Since the lagrangian is first order 
in time derivatives we recover the phase space as the 
space of based loops LG/G together with the sym- 
plectic structure [ 8 ] 

d ~Oo -- ~ Tr(g-~Sg) ~ (g-XSg). 

Quantization of this system gives the basic represen- 
tation of LG [ 8,10 ] from which one obtains the chiral 
algebra of the G current algebra. In particular the 
boundary values of the gauge field A~, become opera- 
tors satisfying the commutation relations of KaY- 
Moody currents. 

When I; is more complicated U will not in general 
be single-valued. For example, on the annulus, giving 
U an appropriate holonomy under ~o~0+2n we re- 
produce the symplectic structure 

oJ= a;o + ~ Tr to(g-I 8g )2  

on the phase space associated to each boundary, where 
to defines a coadj oint orbit of (a central extension of ) 
LG. Quantization of this system gives the other inte- 
grable representations of LG [ 10 ]. 

Finally, consider the effect of shrinking a boundary 
to a point. As a hole shrinks to a point a gauge field 
with holonomy becomes a gauge transform of a 
smooth gauge field by a singular gauge transforma~ 
tion. Consider a closed loop in C in Y = R 2 × S  1 wind- 
ing around the S ~ direction and not linking any 
Wilson loop. If we perform a gauge transformation 
which, near C, is of the form g(O)=exp(c~0), for 
some element a of the Lie algebra (0 is an angular 
variable), then the value of the path integral will 
change. Therefore, performing a singular gauge 
transformation along a curve defines an operator ,2. 
In CSGT such operators are equivalent to the Wilson 
operators, as we now demonstrate. Regularize the 
operator by first cutting out a small tube around C 

~z If other operators link C, this simple construction works only 
for e x p ( a )  in the center of  G. The operator constructed this 
way is known as "t Hoofl operator [ 11 ]. 
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and then performing the gauge transformation g(O). 
The action changes by ~3 

k 
S ~ S -  ~ f Tr Ag-ldg. 

8Y  

To define a gauge-invariant operator, average over 
gauge transformations h(t)g(¢))h-t(t). Physically, 
averaging quantizes the collective coordinates of the 
soliton created by the operator. Thus, the effect of this 
loop operator on the path integral is 

f DA e xp ( iS )~  f DA Ic(A) exp(iS) , 

where 

k~Tr(o~h(d+A)h-~)). /c(A) = ~ Dh( t ) e xp  ( - i ~  
C 

The action depends only on the degrees of freedom 
describing the (coadjoint) orbit h -~ (t)ah(t). Thus, 
separating the degrees of freedom we find that Ic (A) 
is, up to a constant, simply the path integral of a well- 
known quantum mechanics problem describing the 
quantization of the orbit of ½ ka with the hamiltonian 
given by the function ½kTrA-~(t)ah(t) on the or- 
bit (see, e.g. ref. [ 12 ] ). In particular the path inte- 
gral only makes sense if ½ka=2 is a weight of the 
group, in which case we can replace the path integral 
by 

Ic(A)--, W~ (C)=Tr~ P exp (i ! A) , 

thus completing the demonstration of the equiva- 
lence with Wilson loops. 

2. Extensions of affine algebras 

The CSGT for non-simply connected compact Lie 
groups G = G /Z  (for G simply connected with center 
Z) exhibits new features ~4. The actions for the G and 

theories are the same, but the path integrals differ 
in the integration region, since there are G bundles 

which do not lift to CJ bundles. Normalizing the roots 
a of G so that exp(2nc~) = 1 (and hence exp(2n/~) is 
central for weights /t), topologically nontrivial G- 
bundles on Riemann surfaces are constructed from 
transition functions of the form gu(O)---exp(O/z) 
where ~ is some angular coordinate. In the CJ theory 
the action of an 't Hooft operator associated to gu 
parallel to some Wilson line Wa(C) (0 winds around 
C ), produces a new Wilson line Wuta ) (C) associated 
to the holonomy exp[2n(#+2/k)]. The mapping 
2~/z(2)  of current algebra representations is well- 
known in conformal field theory as the spectral flow 
operation associated to the central element exp (2n/t) 
(which in turn is usually associated with a corre- 
sponding automorphism of the extended Dynkin 
diagram) [ 13-15 ]. The flow operation is simply 
characterized as the mapping of representations in- 
duced by the transformation 

J(z) --,g2(z)J(z)g2- ' (z) - kOg2(z)~2 -' (z) 

of the currents ~5 where I2(z) -- z u. Thus in the G the- 
ory the Wilson lines in representations related by 
spectral flow are equivalent. Correspondingly in 2D 
CFT there is an extended chiral algebra, extending 
the ordinary Q current algebra, d ( G ) .  Denoting by 
~ .  the integrable representations of the ~ current al- 
gebra we have the chiral algebra d ( G ) = ~ , ~ ( u ( o )  
(where the sum over p is over the elements of Z ) and 
similarly, the representations of .~'(G) are ~ ; 4 =  
~ ,u'~.  ().)" 

Path integrals in the G theory can be expressed as 
path integrals in the G theory. Since the 't Hooft loop 
associated to gu is trivial in the G path integral and 
creates the Wilson line W~k/2)u in the Q path integral 
we can think of the G theory as a G theory in which 
the 't Hooft solitons have condensed. The G theory 
functional integral is a sum of functional integrals in 
the G theory with insertions of/- / (C) =Z(k/2)~(C) 
for every curve C which is a generator o fH ~ (Y). For 
instance, for the three-manifold SZ× S ~ we can eval- 
uate the expectation values of Wilson lines on C~ as 

~3 In deriving this we have to be careful about the boundary terms 
discussed above, accounting for the "extra" factor of 2. 

~4 The following discussion is easily modified if we use only a 
subgroup of the center. 

~5 Recall that since the tangential gauge field A~, becomes the cur- 
rent in two dimensions this is the 2D analog of the 't Hooft 
operator. 

424 



Volume 220, number 3 PHYSICS LETTERS B 6 April 1989 

f DA f i  W[a~I(C~ ) exp(iS) 
a = l  

G t h e o r y  

f DA H(C,) f l  W~,(C~) exp(iS) 
a = l  

t h e o r y  

(2.1) 

where C, winds around the S l direction. In this 
expression we should include only Wilson lines which 
are invariant under G gauge transformations. This 
amounts to insertions of the projection operator 
H(C~)/ IZI  where C~ winds around C~ and IZl is 
the order of Z. We could also insert this projection 
operator with Ca cabling (i.e. parallel nonbraiding 
relative to) C~. Cabled Wilson lines in representa- 
tions i, j satisfy the fusion rule algebra [ 16 ] of the 
corresponding CFT [ 6 ]: 

W,(C)Wj(C) = ~ N~Wk(C) .  
k 

Hence, we can rewrite the above path integrals as 

I Zl f DA 
CJ t h e o r y  

) × ~ W~o)(C~) exp( iS) .  
a =  1 ,uEZ 

From these considerations we can draw several 
conclusions. First, unlike d ( G ) ,  the chiral algebra 
d ( G )  does not makes sense for every integer value 
of k. From the point of view of three dimensions the 
Wilson lines W(k/2D, should be invisible in the G path 
integral, in particular they should not depend on 
framing [ 6 ]. From the point of view of two dimen- 
sions the fields in the extending representations afu(o ) 
must be mutually local, in particular they should have 
integer weights. In any case, the restriction on k is 
that (k/z, k/z+2p) = 0 m o d 2 ( k + h )  where h is the 
dual coxeter number and p half the sum of positive 
roots of G. Not surprisingly, d ( G )  is the chiral al- 
gebra of the WZW theory based on the group G 
[ 17,14,15 ] for these values of k. Precisely for these 
values the WZW theory has a diagonal partition 
function. 

To enumerate the observables of the G theory we 
must keep in mind the following three rules: 

Rule (a): Since the G theory should not be sensi- 

tive to the precise location of the insertions of 
W(k/E)l.t , the allowed Wilson operators Wz should 
have trivial braiding properties with respect to 
Wtk/2)~,. Equivalently, we require the Wilson lines to 
be gauge invariant, even under the gauge transfor- 
mations gu(~) (with ~ running along the loop). 
Therefore 2 is also a weight of G. From the 2D point 
of view we require primary fields to be mutually local 
with respect to the extending fields ~ to ) .  

Rule (b): The operators W~ and Wu(~ ) are equiv- 
alent. In 2D language the representations ~ ]  of 
d ( G )  have the form ~t~] = ~,Jfu~z). There are cor- 
responding relations between the spaces of confor- 
mal blocks and the braiding matrices for d ( G )  and 
d ( G ) .  For example, considering conformal blocks 
as invariant tensors determined by Ward identities 
we have 

Inv( #ti~, I ..... 3¢i;.,,,] )o = (~) Inv( .~,~., ~, .~.~, .~,,,)~. 

Rule (c): ~t~] is reducible if 2 is fixed by some 
spectral flow/Z(2) =2. In 2D CFT ~ l  is a direct sum 
of equivalent d ( Q )  representations. The operators 
which extend d ( G )  act with phases which distin- 
guish these as distinct d ( G )  representations. In 3D 
CSGT there are new operators which cannot be rep- 
resented by Wilson lines but rather must be repre- 
sented by a Wilson line with a line emanating perpen- 
dicularly, where the emanating line carries one of the 
extending representations (k/2)  It. 

The above picture can be checked by quantizing 
the G-theory on special Riemann surfaces. Consider 
first the quantization on the disk. Repeating the dis- 
cussion from ( 1.1 ) to (1.2), we again find the phase 
space LG/G.  Since Z~o(LG/G)=rq(G),  the phase 
space and Hilbert space are decomposed into sectors 
labeled by the elements of lrl (G).  (Since the gauge 
group of the theory forces g=  1 at the boundary there 
are non-trivial G bundles on the disk which are class- 
ified by zq (G).  ) Quantizing in the nontrivial sectors 
amounts to quantizing fields U which, when lifted to 

have holonomy exp(21t/z). By the above discus- 
sion of 't Hooft loops we recover the previous de- 
scription of the chiral algebra. This description can 
also be recovered from the Borel-Weil theorem [ 15 ]. 

Proceeding now to the torus we must quantize the 
phase space given by the space of flat G bundles. This 
phase space decomposes into several components. 
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The space of flat G bundles which lift to G bundles is 
T × T / W  where T is the maximal torus of  G and the 
Weyl group W acts diagonally. Since T is T /Z ,  and 
since the G physical states are the Weyl-Ka~ charac- 
ters, the characters which descent from T X T / W  to 
T × T / W  are in one-to-one correspondence with the 
space ~ ]  mentioned in rules (a),  (b) above. Note 
that in the semi-classical limit the number of physical 
states has been reduced by a factor of  I Zl 2 (one fac- 
tor of  I ZI corresponds to rule (a) and another one to 
rule (b ) ) ,  as expected since the volume of the classi- 
cal phase space is reduced by ]Zl 2. The remaining 
components of phase space, parametrizing G bun- 
dles which do not lift to G bundles are simply points 
corresponding to conjugacy classes of  solutions (A, 
B ) ~ G × G  to ABA-~B-~=exp(2n~) [18]. These 
solutions correspond to the solutions of  the fixed- 
point condition/1(2) =2. Each point in phase space 
contributes one quantum state, thus reproducing the 
counting of representations implied by rule (c). The 
states associated to twisted G bundles on the torus 
correspond to the conformal blocks for the torus one 
point functions of  G current algebra for the represen- 
tations/z (0). 

Two simple examples illustrate these ideas. First 
consider U ( 1 ) = R/Z. The special representations/1 
have charges (k /2 )  Z. Since A, = ½ (k /2 )  2 has to be an 
integer, k must be divisible by 4. Rule (a) excludes 
Wilson loops with fractional charges. Rule (b) states 
that loops with charges n and n + k/2 have the same 
correlation functions. Since the spectral flow has no 
fixed point, rule (c) does not apply (there are no non- 
trivial fiat bundles). We conclude that this theory 
leads to the chiral algebra of  the rational torus with 
level N =  k/4. The 't Hooft operator, Wk/2, is the 3D 
version of the operator exp (i~2-NX) which extends 
the Ka6-Moody algebra in 2D theory. Notice that 
~¢(R) ~ ~¢(U( 1 ) ). ~¢(R) is generated by OXand is 
usually referred to as (the enveloping algebra of )  
U( 1 ) KaY-Moody. ~¢(U( 1 ) ), which depends on the 
level will also be denoted by U( 1 )N. AS a second ex- 
ample take SO ( 3 ) = SU (2)/Z2. In this case, the spe- 
cial representation /z has spin k/2. Since A~= 
(k/2)  (k/2 + 1 ) / ( k +  2) has to be an integer, k has to 
divisible by 4. Rule (a) excludes Wilson loops with 
half integral spins. Rule (b) guarantees that loops 
with spin j and k / 2 - j  have the same correlation 
functions. The fixed point of the spectral flow, j =  k~ 

4, corresponds to two different representations of  the 
chiral algebra (rule (c)) .  We conclude that this the- 
ory leads to the chiral algebra obtained in SO(3) 
WZW theories at level k =  0 mod 4 [ 1 7,1,2,1 9 ]. No- 
tice that ~¢(SU (2) )  c d ( S O ( 3 )  ). 

3. Coset constructions 

The previous construction can obviously be ex- 
tended to include products of  gauge groups and var- 
ious divisions by subgroups of the centers. A more 
interesting situation arises if one considers a tensor 
product of  gauge groups G1 × ... X Gn where the cou- 
plings ki of the gauge groups are allowed to have both 
positive and negative signs. Since the overall sign of 
the action can be changed by reversing the orienta- 
tion of the manifold, only the relative signs of ki are 
significant. Consider for example the theory based on 
the gauge group G ×  H with the action koCS ( A ) -  
kHCS(B) where A is a G gauge field and B is an H 
gauge field. The Wilson line operators are 
trA ( P exp (fA) ) tra ( P exp ( ~B ) ). Since we can change 
the sign of kn by the transformation B(x)--, 
- B ( - x ) ,  quantization on compact Riemann sur- 
faces leads to quantum states which are the confor- 
real blocks ofa  holomorphic G theory times the con- 
formal blocks of an antiholomorphic H theory. 
Correspondingly, the duality matrices are those of G 
times the inverse of those of H. When quantizing on 
the disk with the boundary conditions discussed in 
section one we find the algebra .# (G)  × .#( H ). 

I f  H c G and kG = Ikn, where l is the index of the 
embedding, there is another possible boundary con- 
dition ~6. Let Y =  D × R and recall that the boundary 
conditions have to be consistent with the equations 
of motion, and therefore kGTrA ~A-  kHTr BSB = O. 
Let nn be the orthogonal projection in the Killing 
metric of the Lie algebra of G onto the Lie algebra of  
H. We may then impose nH (A) = B for the tangential 
directions of  the gauge fields and A o -  nn (Ao) = 0 for 
the time direction. These boundary conditions leave 
a gauge group of maps (g, h) : D ~ G X H  which re- 
duce to the diagonal map (h, h) on the boundary. In 
fact the boundary condition allows a holonomy 

156 For convenience we take l= 1 henceforth. 
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exp (2n/t) for h. Thus the gauge group of the CSGT 
is ( G ×  H ) / Z  where Z is the common center of  G and 
H. Following manipulations analogous to those used 
in passing from (1.1) to (1.2) the path integral on 
D × R becomes, after factoring out the gauge group 
volume, an integral over the boundary values of fields: 

f D2 D U D V exp (ikSwzw (U) - ikSwzw (V) 

+ik  f T r2 (0eU U ' - - o lp r r - l ) )  , (3.1) 

where the path integral on 2 in the Lie algebra of H 
enforces the boundary condition. I f  we define U= g V, 
a,=2,  and a o = - ~ V  V-~ then a simple application 
of the Polyakov-Wiegmann formula shows that (3.1) 
is the path integral of the gauged WZW model ~7. It 
is known [20] that the gauged WZW action repro- 
duces the coset G / H  theory. We may understand this 
since quantization of (3.1) where the fields U, Vhave 
holonomies appropriate to representations A, 2 of LG, 
LH, respectively, leads to the space of quantum states 
JCA®J¢~. The difference of the H currents 
nH (OoU U -~ ) - 0 o V  V -  ~ is an LH affine Lie algebra 
with zero central extension, so the vanishing of these 
operators on the physical states is a set of  first class 
constraints. Imposing these constraints restricts the 
physical states to the LH invariant states in the ten- 
sor product, which is simply the space of LH inter- 
twiners between JCx and the representation ~ ,  con- 
sidered as an LH representation. In formulas: 

~A,2 ~ ( ~ A  ® ~ ) L H = H O m L H ( O ~ ,  ~ A )  • 

These are precisely the states obtained from the more 
traditional description )CA = @aOfA.~® ~ .  

The observables of the coset CSGT are products of  
G and H Wilson operators subject to rules analogous 
to rules ( a ) - ( c )  of the previous section. First, the 
common center Z imposes the selection rule that 2 
and A transform the same way under Z. Second, the 
spectral flow associated to Z identifies pairs of rep- 
resentations: JfA.a~(A).u(~.). Third, if the spectral 
flow fixes a pair of representations then ~A.). is a re- 
ducible representation of the coset chiral algebra so 
there exist new operators. Generically rules ( a ) - ( c )  

~7 Jacobians are irrelevant here since they do not alter the canon- 
ical formalism we will derive. 

completely determine the representation content of 
coset theories, but there exists cases (e.g. conformal 
embeddings) with additional selection rules. 

From the above description of Wilson lines it is 
clear that the braiding and modular transformation 
matrices of the coset theory must have the form 
B G / H = B G @ B ~ I  l , S G / H . ~ . S G ( ~ S H  1 , and T G / H =  T G ®  

T~ ~ [21 ] subject to the above selection and identi- 
fication rules. 

The above ideas can be illustrated with many ex- 
amples. For example the coset theory U ( 1 ) N X  

U(1)M/U(1)N+M c a n  be solved explicitly in both 
two and three dimensions and is equivalent to U ( 1 )L 
where the level is L = N M ( N + M ) / ( N , M )  2 (here 
(N, M) denotes the greatest common divisor)~s 
Another famous example of a coset theory is that of 
parafermions of level N. These are equivalent to the 
CSGT based on S U ( 2 ) k x U ( 1 ) _ k / Z >  It is impor- 
tant to note that in the coset construction one roods 
out by the algebra of the rational torus, not just ~ ( R ) .  
Rules (a),  (b) reproduce the well-known description 
of the representations of parafermion algebras 
[22,23]. Similarly, the three famous N=0 ,  1, 2 dis- 
crete series can be studied from three dimensions. In 
the coset construction of the N =  0 discrete series [ 24 ] 
one uses the gauge group SU(2)k×SU(2)~  
X SU (2) _ ~k+ ~ )/72. The representations are labelled 
by spins (Jb J2, J3) with 0 <~j~ <~ k/2, 0 ~<J2 ~< 1/2 and 
0 ~<J3 ~< ( k +  1 )/2.  The existence of a common center 
imposes the selection rulejl +jz+j3eY-. Correspond- 
ingly there is an identification 01, J2, J3)~  ( k /2 - j~ ,  
1/2-j> ( k +  1 ) / 2 - j 3 ) .  We recover the traditional 
description [25] of fields 0pq defining p=2j~ 
+1,  q = 2 j 3 + l  and m = ( k + 2 ) .  For the super- 
discrete series we consider SU(2)kXSU(2)2  
× SU (2)_ ~k+ 2) ~Y-z, similar considerations apply ex- 
cept we must apply rule (c) above when k is even 
since the representation (k/4, 1/2, (k+  2 ) /4  ) is fixed 
by the spectral flow (in 2D this is the supersymmet- 
ric ground state. ). Similarly, the N =  2 discrete series 
corresponds to SU(2)k X U ( 1 )2XU( 1 )_ (k+2)/7~ 2. 

~8 When verifying our rules it is important to note that ~¢(U( 1 ) ) 
level N is in fact nonabelian and has a discrete center Z2N. 
Hence, the gauge group is U ( 1 ) N × U ( 1 ) M X U ( 1 ) N + M /  
~2(N,M), 
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4. Orbifolds 

We now turn to the CSGT for disconnected groups. 
Fo r  generic groups, this theory does not  lead to any 
two-dimensional  conformal  field theory. However ,  a 
subset of  the d isconnected  groups is interesting. Let 
G be a connected group with a discrete au tomorph-  
ism group P. Then one can constructed the semi-di-  
rect product  group P)<G. Quant iz ing the system on 
the disk and repeat ing the steps in the previous  ex- 
amples  we f ind that  the effective act ion is the W Z W  
action for a field U on the bounda ry  which takes val- 
ues in G. The phase space is L G / G  and leads to 
.~/(G),  but  because of  P gauge invariance,  the 
Hilber t  space has to be t runcated to the P invar iant  
states (the states are in representat ions  of  P because 
P is an au tomorph i sm of  G ) .  This can be seen by 
considering the CSGT on D × S ~. The funct ional  in- 
tegral in this case leads to the trace over  the Hi lber t  
space (since the hami l ton ian  of  the 3D theory van- 
ishes, this trace is inf ini te) .  In the functional  integral 
we need to sum over P bundles.  This sum projects 
out the states which are not P invariant .  Therefore,  
.~/(P~XG ) = ,~/(G ) /P .  This is the chiral algebra of  the 
orbifold constructed as G / P .  

By quant iz ing the system on the annulus  N, we ob- 
tain all the representations of  the orbifold model. The 
Hi lber t  space is a direct  sum of  products  o f  two rep- 
resentations,  one for each boundary  o f  the annulus.  
Because of  the sum over the P bundles  we f ind the 
same representat ion of  the orbifold algebra on the two 
boundar ies  ~9. Indeed,  the effective 2D theory on 
0 ( N × S  ~ ) is the W Z W  theory summed  over  twisted 
boundary  condi t ions  in the "space"  and " t i m e "  di- 
rection. This is known to lead to the orbifold.  

Orbifolds  and cosets are very s imilar  in both  two 
and three dimensions .  In 3D we reduced the chiral  
algebra of  the G theory by enlarging the gauge group. 
In 2D both theories are ob ta ined  by considering a G 
theory and gauging either a cont inuous  subgroup, H /  
Z (to obtain G / H )  or a discrete au tomorphism group, 
P ( to obta in  G / P ) .  Final ly  note that  the gauge group 

,9 This phenomenon is more general. The Hilbert space of the 
annulus for every gauge group is ~ ® ~ , ~  where the sum is 
over all the irreps of d = ~o. The string is thus "thickened" to 
a ribbon. The left movers and the right movers "live" on dif- 
ferent sides of this ribbon. This provides and explicit realiza- 
tion of a speculation in ref. [26]. 

( G × H ) / Z  of  the coset CSGT can also be wri t ten as 
(H/Z)~<G which is the same as the prescr ipt ion for 
orbifolds.  In the classical l imit  of  these theories the 
integral weight fields have a closed OPE. Therefore,  
there should be a one to one correspondence between 
these representat ions  of  the chiral algebra and repre- 
senta t ion spaces of  some group [ 3 ]. This group is the 
gauge group o f  the 3D theory. 

As examples  consider  the c =  1 rat ional  orbifolds 
[27,28 ]. F rom the above considerat ions  ~o it is clear 
that  the appropr ia te  gauge group is O (2) .  As a check 
let us count the number  of  representat ions on the to- 
rus. F r o m  conformal  field theory one easily finds that  
for the rat ional  orbifold of  level N the re  are N +  7 rep- 
resentat ions [28] .  The modul i  space o f  flat 0 ( 2 )  
bundles  splits into those which can and cannot  be 
considered to be SO (2)  bundles.  The modul i  space 
of  flat SO (2)  bundles  is a torus, which must  be di- 
v ided  by the ;72 act ion z - - , - z .  Of  the 2N characters  
of  the rat ional  torus, N +  1 are invar iant  ~' '. One then 
easily checks that  in addi t ion  the phase space consists 
o f  six isolated points  for twisted O ( 2 )  bundles.  Each 
poin t  contr ibutes  one quan tum state for a total  o f  
N +  7. As a second example consider  the orbifold 
SU (2)k/7-2 X Z2, where we take the quot ient  by 180 ° 
degree rotat ions a round  orthogonal  axes. Here two 
interest ing subtleties arise. First ,  the modul i  space 
again decomposes  into " twis ted"  and "un twis ted"  
components  (not  to be confused with the 2D mean-  
ing of  these words)  but  some of  the twisted compo-  
nents  are not  points  but  manifolds.  Second, some of  
the twisted components  in fact contr ibute  no quan- 
tum states, because o f  a global anomaly  in the appro-  
pr ia te  sector. One finds that  the number  of  quan tum 
states is ( 1 l k + 3 2 ) / 2  i f k  is even and ( 1 l k +  11 ) / 2  
i f  k is odd,  as can be der ived by more  convent ional  
techniques [28 ]. 

5. Conjectured classification 

We have explored a number  of  compact  groups and 
have shown that  all known chiral  algebras can be ob- 

,~o E. Witten first suggested that 0(2)  would reproduce the ra- 
tional orbifold. This suggestion motivated the above con- 
struction for orbifolds. 

"~t Or, dividing by 272 produces a sphere, giving N+ 1 states by 
standard coadjoint quantization of SU (2). 
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ta ined  from the quant iza t ion  of  a CSGT for a com- 
pact  gauge group. Although CSGT' s  for noncompac t  
groups exist and  are interest ing they should not  lead 
to RCFT's .  By defini t ion,  a conformal  field theory is 
ra t ional  only i f  the number  of  conformal  blocks on 
any compact  surface Y is finite. Therefore  the 3D 
theory should assign a finite d imens iona l  Hi lber t  
space to E which is possible only i f  the classical phase 
space, the modul i  space of  fiat G-connect ions  on E, 
is compact .  The modul i  space is compact  only when 
the underlying gauge symmet ry  is compact  and hence 
R C F T  can arise only f rom compact  gauge groups. 

Since the known R C F T ' s  are so well organized by 
CSGT, we conjecture that  all chiral algebras of R CFT 
arise from the quantization of the 3D CSGT for some 
compact Lie group. This conjecture is in accord with 
the phi losophy of  ref. [ 3 ] which emphas ized  that  
R C F T  should be viewed as a general izat ion o f  group 
theory. I f  our  conjecture is correct,  the classif ication 
o f  chiral  algebras is closely related to the classifica- 
t ion o f  compact  Lie groups. This correspondence is 
not  one to one. Several chiral  algebras can be ob- 
ta ined  f rom more  than one group. Also, as discussed 
earlier, some groups do not  lead to a conformal  field 
theory. 

Although we do not  have a p roo f  of  our conjecture,  
we will make  it more  plausible by suggesting an out- 
line o f  a possible proof.  In  ref. [ 3 ] we proposed  ax- 
ioms for a RCFT.  The classical vers ion o f  these ax- 
ioms arise in category theory and lead to group theory 
[29 ]. It is l ikely that  a s imilar  reconstruct ion theo- 
rem will show that  the axioms in ref. [ 3 ] lead to 
quan tum groups. In fact, using [4,5] ,  one sees that  
every quan tum group satisfies these axioms. Fur ther-  
more,  the dual i ty  matr ices  o f  some quan tum groups 
are the same as those of  a corresponding RCFT.  

If  the reconstruct ion theorem is proven,  the con- 
nect ion to the 3D CSGT theory can be establ ished as 
follows. Cons ider  the theory with gauge group G on 
~2 as space with sources at the poin t  Pi. The sources 
can be represented as a copy o f  the coadjo in t  orbi t  
G / T  at each P~ [6] .  The Hi lber t  space o f  the theory 
is @iR, where R~ is a representa t ion  space of  G cor- 
responding to the source at P~. When  the space is 
compact i f ied  to S 2, there are further restr ict ions on 
the Hi lber t  space - one more  Gauss  law has to be sat- 
isfied. In the semi-classical  l imi t  this Gauss  law re- 
stricts the Hi lber t  space to the G- invar ian t  tensors in 

®iRi [6 ]. It  is possible (and  the first non-tr ivial  or- 
der  in an expansion 1 /k  supports  i t )  that  at f inite k 
the effect o f  this Gauss  law is to restrict  the Hilber t  
space to the invar iant  tensors o f  the quan tum version 
of  G. This  will provide  a conceptual  explanat ion  for 
the coincidence of  the dual i ty  matr ices  o f  R C F T  and 
6j symbols  for special quan tum groups, and  will com- 
plete the p roof  of  our conjecture.  
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