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Notes on black holes and three
dimensional gravity
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Abstract.

These notes are the written version of two lectures delivered at the VIII Mexican
School on Particles and Fields on November 1998. The level of the notes is basic
assuming only some knowledge on Statistical Mechanics, General Relativity and Yang-
Mills theory. After a brief introduction to the classical and semiclassical aspects of
black holes, we review some relevant results on 2+1 quantum gravity. These include
the Chern-Simons formulation and its affine Kac-Moody algebra, the asymptotic al-
gebra of Brown and Henneaux, and the statistical mechanics description of 2+1 black
holes. Hopefully, this contribution will be complementary with the review paper hep-
th/9901148 by the same author, and perhaps, a shortcut to some recent developments
in three dimensional gravity.

I INTRODUCTION

During the last three years we have witnessed a rapid progress in the string
theory description of general relativity. Successfull computations of black hole
entropy for extremal and near extremal solutions [1,2] have made it clear that the
string theory degrees of freedom describes the expected semiclassical behaviour of
general relativity. This is in sharp constrast with the more standard approach to
quantum gravity either based on the path integral approach or the Wheeler-de Witt
equation which has provided little information about the fundamental degrees of
freedom giving rise to the Bekenstein-Hawking entropy. In the Loop representation
approach to quantum gravity, a computation of the black hole entropy has been
proposed [3,4]. However, in this formulation it is still obscure how to introduce
dynamics, and only the kinematics of spin networks is under control.

In this contribution we shall consider neither string theory nor loop quantum
gravity. Instead, we work in the very simple setting of three-dimensional quantum
gravity whose Lagrangian describes a well-defined quantum field theory [5,6]. As
motivations to study three-dimensional gravity, let us mention the following aspects
of it. (i) It is a mathematically simple theory which combines three important
branches of physics: General Relativity, Yang-Mills theory (with a Chern-Simons

http://arXiv.org/abs/hep-th/9903244v1


action), and two-dimensional Conformal Field Theory. (ii) The mathematical tools
are surprinsingly similar to those used in string theory, with a centrally extended
Virasoro algebra [7] as one of its main ingredients. (iii) The space of solutions
contains particle solutions [8] and black holes [9], thus making it interesting from
the dynamical point of view.

In these notes, we shall mainly be interested in quantum black holes in three di-
mensions. Our goal is to give, in a somehow self-contained way, a derivation of Stro-
minger’s [10] proposal for the statistical mechanical origin of the three-dimensional
black hole entropy. We refer the reader to [11–14] for the stringy aspects of Stro-
minger’s result. See also [15] for a recent review. We shall concentrate here on the
gravitational aspects. For a detailed and complete treatment of three dimensional
gravity we refer to the recent book by Carlip [16].

In Sec. II we shall briefly review, at the most basic level, some of the main
properties of the Schwarzschild solution, as well as the three-dimensional black
hole [9]. In Sec. III we review the Chern-Simons formulation of three-dimensional
gravity. Particular empahsis is given to the absence of bulk degrees of freedom, and
a quick derivation of the affine Kac-Moody algebra is presented. Finally, in Sec. IV
we derive the Brown-Henneaux conformal algebra, and its statistical mechanical
[10,45] implications.

II CLASSICAL AND SEMICLASSICAL BLACK HOLES

A The black hole spacetime

The Schwarzschild metric (r > r0),

ds2 = −(1 − 2M/r)dt2 + (1 − 2M/r)−1dr2 + r2dΩ2, (1)

is an exact solution of the Einstein vacuum equations

Gµν = Rµν −
1

2
gµνR = 0, (2)

representing the geometry outside a collapsing star of mass M and radius r0. One of
the most surprising predictions of General Relativity, which caused much confusion
in the past, is the appearance of a singularity in the metric for the particular value
of r:

r =: r+ = 2M (Event Horizon). (3)

If the radius of the star r0 is less that r+ then the solution (1), which is valid for
r > r0, has a singularity at r = r+. Furthermore, in the region 0 < r < r+ where
the metric is again regular, r is a timelike coordinate while t is spacelike. Finally,
at r = 0 the curvature blows up making gravitational forces divergent there. This
means, in particular, that no observer can reach the singularity without being



destroyed. The possibility of making experiments near the singularity is prevented
by another fact: any observer that crosses the event horizon r = r+ will never
come back, at least not according to the classical Einstein equations. We shall
prove this below. Quantum mechanically, particles can tunnel out of the black hole
and escape to infinity. This is Hawking’s famous discovery of black hole radiation
[26]. However, according to Hawking’s description there is no correlation between
the particles that fall into the black hole with the ones that escape. This point is
actually a matter of discussion and there is no agreement yet. We will not have time
here to describe in any detail this very interesting work. We refer the interested
reader, for example, to [24] for a review with an extensive list of references.

Let us now briefly show how to deal with the r = r+ singularity in (1). This
will allow us to see why observers cannot travel back once they have crossed the
horizon. We shall also infer the value of Hawking’s temperature via a geometrical
argument.

The analysis that follows does not depend on the details of the Schwarzschild
solution but only on some general properties of black holes. We consider general
metrics in d dimensions of the form,

ds2 = −f(r)dt2 + f−1(r)dr2 + ds2
d−2, (4)

where ds2
d−2 represents the metric of a Sd−2 sphere, or some other compact or non-

compact surface. The function f(r) satisfies the following two properties: (i) There
exists a value of r denoted as r+ such that f(r+) = 0; (ii) The derivative of f at
r+ is different from zero,

α ≡ 1

2

df(r)

dr

∣

∣

∣

∣

∣

r=r+

, α 6= 0. (5)

Most known (non-extreme!) black holes have a metric of this form, or at least
there is a plane on which the metric near r = r+ looks like the first two terms in
(4). The extreme black holes do not fall into the above class of metrics because the
function f(r) has a second order zero and thus α = 0. These black holes play an
important role in string theory because they are related to BPS states.

For the Schwarzschild black hole, the function f is given by f(r) = 1−2M/r and
f ′(r+) = 1/2M . This means that α = 1/4M which is indeed different from zero.
Other examples are: The Reissner-Nordstrom black hole with f(r) = 1 − 2M/r +
e2/r2 and e is the electric charge. In this case, α is different from zero provided
M 6= e; The 2+1 black hole (to be studied in detail in the next section) with
f(r) = −M + r2/l2 and l is related to a cosmological constant; The d-dimensional
Schwarzschild solution with f(r) = 1−2M/rd−3; plus all the (non-extreme) stringy
black holes [27], as well as other higher dimensional situations [28]. Students are
encouraged to compute the value of α for each of these black holes, as we shall see
soon, this number is essentially Hawking’s temperature for each of these objects.

The metric (4) is singular at the event horizon, just as the Schwarzschild metric
is. To cure this singularity we introduce the following new set of coordinates. We
change {r, t} to {u, v} according to,



u = g(r) coshαt,

v = g(r) sinhαt, (6)

where the function g(r) is defined by,

g(r) = exp

(

α
∫ r dr′

f(r′)

)

. (7)

This change of coordinates has the following properties. The event horizon r = r+

is mapped into the lines u = ±v. The metric in terms of u, v reads,

ds2 = Ω2(r)(−dv2 + du2) + r2dΩ2, (8)

where the function,

Ω2(r) =
f(r)

α2g2(r)
, (9)

is regular at r = r+. The regularity of Ω2 holds provided f(r) has a simple pole at
r = r+. It is easy to see using L’Hopital rule that the zero in f(r) is cancelled by
g2(r) provided α is chosen as in (5). Note that the above coordinate change does not
depend on the details of the function f(r), provided it has a single pole at r = r+. Of
course, our formulae for the conformal factor and change of coordinates reproduce
the usual expressions when applied to particular situations like the Schwarzschild
black hole (see [25]).

The coordinates u and v are called Kruskal coordinates and their range is −∞ <
u, v < ∞. These coordinates can be compactified (see [25] for more details on this
points) and led to the Penrose diagram shown in Fig. 11. Region I is the black
hole exterior r > r+ and region II its interior (r < r+). It should be clear from
the figure that an observer situated in region II cannot go back to region I because
he or she would need to travel faster than light. The fate of any future-directed
(timelike) observer is to hit the singularity.
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Penrose diagram for a Schwarzschild black hole.

1) The Penrose diagram shown here assumes asymptotic flatness. This means that the function
f(r) satisfies f(r → ∞) → 1. This is not the case for asymptotically anti-de Sitter black holes
for which f → r2. The Penrose diagram in that case can still be drawn and differs only in the
asymptotic structure, not the properties surrounding the horizon. See second Ref. in [9].



B Semiclassical black holes. The Gibbons-Hawking

approximation

The combination of Euclidean field theory together with the coordinate change
(6) suggest in a very direct way that black holes should have a non-zero temperature.
The Euclidean formalism (sometimes called the Euclidean sector) is obtained by
setting τ = it, and the metric (1) becomes Euclidean. Consider again the change
of coordinates (6) in the Euclidean formalism. The hyperbolic functions will be
replaced by their trigonometrical versions and it is clear that the Euclidean time
variable needs to be an angle 0 ≤ ατ < 2π. In the Euclidean sector, and near
the horizon, the change (6) is nothing but the relation between polar and cartesian
coodinates in ℜ2. In fact, the topology of the Euclidean Schwarzschild black hole
is ℜ2 × S2 where the origin of ℜ2 is situated at the horizon r = r+. The Euclidean
sector does not see the inner region of the black hole r < r+.

Following the usual practice of Euclidean field theory we define the inverse tem-
perature as the Euclidean time period (h̄ = 1),

β =
2π

α
. (10)

So far this is only a mathematical trick with no real physics meaning. However,
it turns out that the temperature T = 1/β defined in (10) coincides exactly with
Hawking’s evaporation temperature. For the Schwarzschild black hole, we recall
that α = 1/4M , this yields the famous Hawking result,

TH =
1

βH

=
1

8πM
. (11)

Now, integrating the first law dM = TdS we find the Bekenstein-Hawking formula
for black hole entropy,

S =
A

4
, (12)

where A = 4πr2
+ is the area of the event horizon (r+ = 2M).

For our purposes, this “derivation” of the black hole temperature and entropy
has an important meaning: geometry knows that black holes radiates. In other
words, the very deep origin of Hawking’s process is not contained only on the
matter fields surrounding a black hole but rather on the gravitational (perhaps
string) degrees of freedom. This point of view is further supported by the Gibbons-
Hawking calculation of the Schwarzschild black hole partition function which we
now describe.

Let us briefly review here the results presented in [17] in the simplest case of a
non-rotating black hole. Our main tool will be again the analogy between Euclidean
field theory and statistical mechanics.

Consider the functional integral,



Z[h] =
∫

Dg e−I[g,h], (13)

where,

I[g, h] = − 1

16πG

(
∫

M

√
gR + 2

∫

∂M

√
hK

)

. (14)

is the Euclidean gravitational action appropriated to fix the metric at the boundary.
Here hij is the 3-metric induced on ∂M . The boundary term is added to the action
to ensure that I has an extremum when h is fixed. Dg denotes the sum, modulo
diffeomorphisms, over all metrics with hij fixed. As it is well known, the formula
(13) is purely formal and cannot be given a precise mathematical meaning. This
is because gravity is not renormalizable and the perturbation expansion for (13)
is not well-defined. To make things worst, the action (14) is not bounded from
below/above, not even in the Euclidean formulation. It is possible to find sequences
of Euclidean manifolds Mi for which the value of the action (14) goes to minus/plus
infinity [18].

Although (13) cannot be computed in general, its saddle point approximation
around some classical solutions gives interesting results. Incidentally, we mention
here that the evaluation of the action I on classical solutions has become crucial in
the recently discovered adS/CFT correspondence [19–21]. The first example of an
evaluation of (13) was performed by Gibbons and Hawking [17] who considered the
Euclidean Schwarzschild black hole (1) with mass M . The mass M and Euclidean
period β are related by (11) in order to avoid singularities (sources) in the Euclidean
metric. The value 2 of Z in the saddle point (1) is

Z[β] ∼ e−β2/16π. (15)

This result is quite remarkable. The thermodynamical formula for the average
energy M = −∂ log Z/∂β reproduces (11) and confirms that β is the inverse tem-
perature of the black hole. In the same way, the average entropy S = ln Z−β∂β ln Z
reproduces (12). This result confirms once again that the black hole thermal proper-
ties are present in a pure quantum theory of gravity, and not only in the interaction
of a classical background metric with quantized fields.

Hawking’s discovery of black hole evaporation is one of the most important results
in the theory of general relativity and quantum mechanics. We refer the reader, for
example, to the classic books by Birrell and Davis [29] and Wald [30] for a detailed
discussion on quantum black holes, and in particular, quantum field theory on
curved spacetimes. These books were written before black holes became important
in string theory. See [31] for a review on the string theory approach to black holes.

We shall now depart from the Schwarzschild four dimensional black hole and go
down to three dimensions where a black hole solution exists [9] having many of the
features of the Schwarzschild solution, but it is far simpler mathematically.

2) Actually, the value of I diverges and needs to be regularized. See [17] for details and [33,34]
for an evaluation of I using Hamiltonian methods on which the regularization is automatic.



Consider the action for three-dimensional gravity with a negative cosmological
constant Λ = −2/l2,

I =
1

16πG

∫ √−g
(

R +
2

l2

)

dx3. (16)

In three dimensions it is convenient to keep the fundamental constants because,
due to the cosmological constant, there are two fundamental length parameters:
Plank’s length lp = h̄G and the cosmological radius l.

The equations of motion derived from this action are solved by the (non-rotating)
three-dimensional black hole [9]

ds2 = −
(

−8MG +
r2

l2

)

dt2 +

(

−8MG +
r2

l2

)−1

dr2 + r2dϕ2. (17)

Angular momentum as well as electric charge can be added easily, see [9].
As for the Schwarzschild metric, we can go to the Euclidean sector and discover

that the time coordinate is periodic. The associated temperature is,

T3 =

√
M

2πl2
, (18)

and the entropy is again given by (12), but now A = 2πr+ is the perimeter length
of the horizon.

A word of caution is necessary here. Contrary to the Schwarzschild case, the
metric (17) is not asymptotically flat. This means that the Euclidean period can-
not be defined as the proper length of the time coordinate at infinity. Note that
the limit r → ∞ of the Euclidean Schwarzschild metric yields a well defined metric
at the “boundary” (infinity is not really a boundary) with the topology S1×S2. S1

corresponds to the periodic time coordinate, while S2 to the angular sphere. The
limit r → ∞ of (17) is not well defined. At infinity, one can only define a conformal
class of metrics . This is a three-dimensional example of the adS/CFT correspon-
dence [19–21] first studied in [7]. A more rigorous definition for the temperature
can be given by noticing that the topology of (17) in the Euclidean sector is a solid
torus. The temperature is related to the complex structure of the torus [37,38] by,

τ =
β

2π

(

Ω +
i

l

)

, (19)

where β is the period of the Euclidean time coordinate, and Ω is the angular
velocity. In the non-rotating case, Ω = 0.

As before, one can write down the three-dimensional partition function in the
saddle point approximation provided by the solution (17). This yields [9] (see also
[52] for a Lagrangian approach),

Z3 ∼ eπ2l2/(2Gβ), (20)



and it is direct to check that the thermodynamical formulae for the average energy
and entropy is consistent with (18).

Our main motivation to study three dimensional quantum gravity is to try to
give a precise meaning to the formula (13) in three dimensions. In other words,
we hope that in three dimensions (13) could be well-defined mathematically, and
provide the semiclassical limit (20). If this is true, then one should be able to
extract from the exact formula for Z which are the degrees of freedom giving rise
to the black hole entropy.

The main mathematical device that we shall use is the Chern-Simons formulation
of three dimensional gravity [5,6]. This formulation makes manifest the fact that
three dimensional gravity does not have any bulk degrees of freedom and it is
renormalizable. Still, this does not mean that the problem is trivial because the
relevant group, see below, is SL(2, C) which is not compact. The evaluation of the
partition function for the black hole problem using the Chern-Simons formulation
was initiated by Carlip [44]. Some clarification on the boundary conditions and the
role of ensembles can be found in [37]. A string theory approach can be found in
[38]. Further developments on the modular properties of the partition function in
three dimensions have recently appeared in [39].

III 2+1 GRAVITY AS A CHERN-SIMONS THEORY.

A First order form of the Euclidean action

We start with the (Palatini) Euclidean action for three dimensional gravity with
a negative cosmological constant Λ = −2/l2,

I[gµν , Γ
ρ
µν ] =

1

16πG

∫ √
g
(

gµνRµν(Γ) +
2

l2

)

(21)

The discovery of Achúcarro and Townsend is that in three dimensions one can
replace the metric by two Yang-Mills fields such that both the structure of the
action and equations of motion simplifies enormously.

This is achieved in various steps. First, we use the Palatini formalism. The idea
of this formalism is to note that the Ricci tensor Rµν depends on the metric only
through the Christoffel symbol Γρ

µν . Then, it follows that if one treats gµν and
Γρ

µν as independent variables in the action (21), the equations of motion yield the
expected relation gµν;λ = 0 between the metric and connection. Next, we make a
change of coordinates from the coordinate basis ∂µ to orthonormal coordinates on
which the metric is flat. The matrix that makes this change is called the triad and
is defined by the formula,

gµν = ea
µ ηab eb

ν (22)

Clearly, ea
µ is defined only up to a (local) Lorentz rotation because if Λ is an element

of the Lorentz group then, by definition, ΛηΛ−1 = η. Equation (22) is nothing but



the transformation of a tensor under a change of coordinates described by the
matrix ea

µ. We also need to transform the Christoffel symbol which is not a tensor
but we know its transformation law under ea

µ,

Γσ
µν = eσ

aωa
bνe

b
µ + eσ

ae
a
µ,ν (23)

where wab
µ , known for historical reasons as the spin connection, is the new ‘Christof-

fel symbol’ in the new coordinates. Eq. (23) is often written in the literature as
ea

µ;ν = 0 where the semicolon denoted full covariant derivative, or as Dµe
a
ν = Γρ

νµea
ρ

where Dµ denotes covariant derivative in the spin connection. These formulae are,
of course, equivalent to (23). Note that in (23) we have only transform two in-
dices. The reason is that the Christoffel symbol is a 1-form connection for the
group GL(4,ℜ), Γµ

ν = Γµ
νρdxρ. The next object we would like to write in the new

coordinates is the curvature tensor. The curvature tensor is a tensorial 2-form, for
that reason we only transform two of its four indices as,

Rλσ
µν = eλ

ae
σ
b R

ab
µν (24)

where Rab = dwab + wa
c∧w

cb. With formulae (22), (23) and (24) at hand we can
prove the identity

∫

ǫabcR
ab
∧ec =

∫ √
gR (25)

The relevant steps are (we go from left to right),
∫

ǫabcR
ab
∧ec =

∫

ǫµνλǫabc

(

1

2
Rab

µν

)

ec
λ

=
1

2

∫

ǫµνλǫabcR
αβ

µνe
a
αeb

βec
λ

=
1

2

∫

ǫµνλǫαβλ e Rαβ
µν . (26)

In the second line we have used (24), and in the third line ǫabce
a
αeb

βe
c
λ = eǫαβλ with

e equal to the determinant of ea
µ, and ǫµνλǫαβλ = δ

[µν]
[αβ] (recall that we are working

in the Euclidean formalism). It should be clear that the last line in (26) is equal
to the right hand side of (25).

Collecting all formulae together we arrive at the new action for three-dimensional
gravity,

I[ea, wab] =
1

16πG

∫

ǫabc

(

Rab +
1

3l2
ea

∧eb
)

∧ec. (27)

The action I[e, w] is equal to the action I[g, Γ] shown in (21). Besides notation
issues there is a conceptual consequence. The action (27) is perfectly well defined
even is the metric is degenerate. In this sense, the triad formulation provides a
generalization for the Einstein-Hilbert action.

The last step before we can write the Chern-Simons action is to define the new
spin connection3 wa and curvature Ra,

3) With this definition of wa the torsion becomes T a = dea + ǫa
bcw

b ∧ ec.



wa = −(1/2)ǫa
bcw

bc, Ra = −(1/2)ǫa
bcR

bc (28)

with Ra = dwa + 1
2
ǫa

bcw
b
∧wc.

We are now ready to make the connection with Chern-Simons theory. Let x be
a complex number and let Aa and Āa to fields related to e and w by,

Aa = wa + xea, Āa = wa − xea. (29)

The relation between Chern-Simons theory and three dimensional general relativity
follows from the equality:

2eaR
a +

x2

3
ǫabce

aebec =
1

2x
(AadAa +

1

3
ǫabcA

aAbAc)

− 1

2x
(ĀadĀa +

1

3
ǫabcĀ

aĀbĀc) + dB. (30)

This relation is true regardless the signature of spacetime or sign of the cosmological
constant. Just plug (29) into the right hand side of (30) and obtain the left hand
side. (dB is a total derivative term.)

Depending on the signature of spacetime and cosmological constant x need to
be complex or real. We shall be interested here in the Euclidean gravity with a
negative cosmological constant. In the case, x is purely imaginary.

B Chern-Simons action

From the equality (30) with x = i/l it follows that the Einstein-Hilbert action
(21) for Euclidean three dimensional gravity can be written in the form,

I[g, Γ] = iI[A] − iI[Ā], (31)

where I[A] is the Chern-Simons action,

I[A] =
k

4π

∫

Tr(AdA +
2

3
A3), (32)

at level4,

k = − l

4G
. (33)

In (31) we have defined

A = AaJa, Ā = ĀaJa. (34)

4) The sign of k depends on the identity
√

g = ±e where e is the determinant of the triad. This
sign determines the relative orientation of the coordinate and orthonormal basis. We have chosen
here the plus sign which means that we work with e > 0.



where the SU(2) generators are given by,

J1 =
i

2

(

0 1
1 0

)

, J2 =
1

2

(

0 −1
1 0

)

, 3 =
i

2

(

1 0
0 −1

)

, (35)

and satisfy [Ja, Jb] = ǫ c
ab Jc, Tr(JaJb) = −(1/2)δab. Note that Ā is not the complex

conjugate of A.
Let F a and F̄ a the Yang-Mills curvatures associated to Aa and Āa. From the

point of view of the equations of motion, the relation between Chern-Simons theory
and general relativity is contained in the fact that the Chern-Simons equations,

F a = 0, F̄ a = 0, (36)

are equivalent to the three-dimensional Einstein equations. Thus, studying the
space of solutions of (36) we are studying general relativity.

The 1-form Aa is a SL(2, C) Yang-Mills gauge field because in (29) x is imaginary.
For Minkowskian gravity x = 1/l is real and the relevant group is SO(2, 1) ×
SO(2, 1).

C Chern-Simons dynamics. Kac-Moody symmetry

Once we have proved the equality between the Chern-Simons and gravitational
actions we can forget about metrics and work with Yang-Mills fields which are much
more tractable. We should keep in mind however that the Chern-Simons action
is a generalization to general relativity in the sense that it can accept degenerate
metrics.

The classical dynamics of Chern-Simons theory is simple to analyse. First, we
note that the Chern-Simons action is already in Hamiltonian form. In the 2+1
decomposition of the gauge field Aa = Aa

0dt + Aa
i dxi, the Chern-Simons action

reads,

I[Ai, A0] =
k

8π

∫

dt
∫

Σ
ǫijδab(A

a
i Ȧ

b
i − Aa

0F
b
ij). (37)

The coordinates xi are local coordinates on the spatial surface denoted by Σ. This
action has 2N dynamical fields Aa

i (a = 1, ..., N ; i = 1, 2) and N Lagrange multipli-
ers Aa

0. The dynamical fields satisfy the basic equal-time Poisson bracket algebra,

{Aa
i (x), Ab

j(y)} =
4π

k
ǫijδ

abδ2(x, y). (38)

The equation of motion with respect to A0 leads to the constraint equation,

k

8π
ǫijF a

ij ≈ 0. (39)



which (after properly taken into account boundary condition and boundary terms
if the spatial surface has a boundary) generates the gauge transformations δAa

i =
Diλ

a in the Poisson bracket (38).
Because the equations of motion of Chern-Simons theory are F = 0 we know

that there are no local degrees of freedom in this theory. It is instructive however
to count the number of degrees of freedom per point using the Dirac formalism. We
have 2N dynamical variables subject to N constrains. These constraints are of first
class and generate the N local gauge transformations. Thus the total number of
local degrees of freedom is indeed zero. This does not mean that the action is trivial.
There are an infinite number of degrees of freedom associated to the breakdown of
gauge invariance at the boundary, plus a finite number associated to holonomies
along non-contractible loops. Here we shall not consider the holonomies. We refer
the reader to [6,22].

The boundary degrees of freedom in Chern-Simons theory can be understood in
many different ways. Their existence was first indicated in [49], and Carlip [43,44]
first pointed out that they may be responsible for the three-dimensional black hole
entropy.

These degrees of freedom are somehow a matter of interpretation rather than
a specific calculation. The point is that, at the boundary, is incorrect to identify
configurations that differ by a gauge transformation. As discussed in [43] this
follows from boundary terms arising in the transformation of the Chern-Simons
action under gauge transformations. Alternatively, following [32], one can see that
at the boundary the transformations δAa

i = Diλ
a are not generated by constraints

and therefore they do not represent proper gauge transformations. In summary,
the symmetry is still there but its interpretation is different.

This point can be exhibited in the following calculation. This analysis is taken
from [50] and [54], with minor modifications. To simplify the notation, let us use
differential form notation in the spatial manifold A = Aidxi. We rewrite the action
(37) in the form,

I[A, A0] =
k

4π

∫

dt
∫

Σ
(A∧Ȧ − A0F ), (40)

where the symbol
∫

includes the trace Tr. The constraint F = 0 implies,

A = g−1dg, (41)

from where we derive two useful identities,

δA = D(g−1δg), Ȧ = D(g−1ġ). (42)

D represents the covariant derivative in the flat connection A given in (41): D =
d+[A, ]. Our goal is to compute the commutator of two solutions of the form (41).

Consider a non-canonical Lagrangian of the form L = la(z)ża whose variation
reads



δL = δzaσabż
b, σab(z) = ∂alb − ∂bla. (43)

If σ is non-degenerate, the Poisson bracket of za with itself is given by

{za, zb} = Jab(z) (44)

where J is the inverse of σ, Jabσbc = δa
c . The Jacobi identity for J follows from

the Bianchi identity for σ. If L = pq̇ the above construction yields [q, p] = 1, as
expected. Following [54], we shall use this method to compute the Poisson bracket
between solutions of the form (41).

The idea is to replace the solution (41) in the action (40) and compute its vari-
ation on the surface (41). Since after replacing (41) in (40) only the kinetic term
survives the variation of I reads,

δI = − k

2π

∫

Ȧ∧δA,

= − k

2π

∫

Σ
D(g−1ġ)∧D(g−1δg),

=
k

2π

∫

∂Σ
Dϕ(g−1ġ) g−1δg. (45)

The last equality follows from D∧D = F = 0. We thus find that the variation of
I on the surface (41) depends only on the boundary values of g. This is of course
the well known fact that the variation of the WZW action can be written as a
local functional of the boundary. It also means that the only non-trivial degrees of
freedom arise at the boundary, and they are the values of g at the boundary. Using
(42), the variation of I can be written as,

δI =
k

2π

∫

∂Σ
Ȧϕ

1

Dϕ
δAϕ (46)

where 1/Dϕ is the inverse of the operator Dϕ = ∂ϕ +[Aϕ, ] which we assume exists
(we exclude functions satisfying Dϕf = 0). Comparing this variation with (43) and
(44), we find the Poisson bracket of Aϕ with itself,

{Aϕ, Aϕ} =
2π

k
Dϕ (47)

where the derivative term in Dϕ should be understood as the derivative of a Dirac
delta function. Finally, we make a Fourier expansion,

A(ϕ) =
2

k

∑

n

T a
neinϕ (48)

and obtain the quantum commutator (h̄ = 1)

[T a
n , T b

m] = iǫab
cT

c
n+m + n

k

2
δabδn+m (49)



Some comments are in order here.
(i) It is clear that the equations of motion do not force Aϕ to be zero. Ac-

tually, in the sector with chiral boundary conditions Aϕ is arbitrary. On the
other hand, Aϕ generates “gauge” transformations acting on itself. Indeed, let
Q(η) = (k/2π)

∫

ηaA
a
ϕ, it follows directly from (47) that,

δAa
ϕ = [Aa

ϕ, Q] = Dϕηa. (50)

However, here the interpretation is quite different because (50) is not generated by
the “Gauss law” constraint F = 0. Instead, it is generated by Aϕ which is different
from zero. The symmetry (50) is a global –not gauge– symmetry. This means
that configurations which differ by a transformation of the form (50) are physically
distinct. This is the origin of boundary degrees of freedom in Chern-Simons theory.

(ii) We have only computed the bracket between the values of the gauge field
A, not the group element g. This will be enough for our purposes but we remark
that the problem of computing the bracket of g(x) with itself leads to interesting
constructions which involve quantum groups. Another remarkable application of
Chern-Simons theory which we will not consider here is knot theory [49].

(iii) The algebra (49) is known as affine, or Kac-Moody, SU(2) algebra. This
algebra is a non-Abelian generalization of the usual Heisenberg algebra [an, am] =
nδn+m. Note that the last term in (49) is precisely the algebra of three oscillators.
The first term couples them and, for example, alter the number of degrees of free-
dom (degeneracy). Unitary representations for (49) are well understood (see, for
example, [47,58,48]) and they exist provided k is an integer.

(iv) Finally, an exercise for interested students: derive (49) starting from (38)
by fixing the gauge Ar = 0, solving the constraints F = 0 and constructing the
Dirac bracket. Note that the constraint F = 0 is a differential equation which on
a manifold with boundary will necessarily lead to an integration function. Identify
this function with Aϕ above.

IV THE BROWN-HENNEAUX CONFORMAL

SYMMETRY

As a final point, we briefly mention one the main application of the affine algebra
(49) to three-dimensional gravity. The content of this section follows the original
papers [7,41] for the derivation of the conformal algebra, [55–57] for the SU(2)k →
Virasoro reduction, and [10,23,45] for the statistical interpretation of the conformal
algebra. See [35,40,59] for other aspects and further developments.

Let us show how does the Brown-Henneaux conformal algebra for anti-de Sit-
ter spacetimes is derived from (49). We follow [41]. (See [36] for an alternative
derivation based on a twisted Sugawara construction, and [46] for a supersymmet-
ric generalization.)

It was pointed out in [41] that the full affine algebra does not represent the
dynamics of anti-de Sitter spacetimes. Indeed, computing the metric associated to



the boundary conditions invariant under (49), one discoveres that they match the
boundary conditions found in [7] only if one imposes the additional restrictions [41]

T 3
n = 0, T+

n = δ0
n, (51)

on the affine generators (T± = T 1 ± iT 2).
These reductions conditions were first studied in [55] in the context of two-

dimensional gravity. It was shown in that reference that the residual algebra leads
to a Virasoro algebra with a central charge c = −6k. Starting from (49) this result
can be proved as follows. We regard (51) as a set of second class constraints to
be imposed in the algebra (49). We then construct the Dirac5 bracket [ , ]∗ which
is invariant under (51): [T 3

n , X]∗ = [T+
n , X]∗ = 0 for all X. The only remaining

component T−

n can be renamed as Ln = (1/k)T−

n and it follows that, in the Dirac
bracket, Ln satisfies the Virasoro algebra

[Ln, Lm]∗ = (n − m)Ln+m +
c

12
n(n2 − 1)δn+m (52)

with central charge c = −6k (see [40] for an explicit calculation). From the value
of k given in (33) we find,

c =
3l

2G
, (53)

which is the correct Brown-Henneaux central charge [7].
The c = 3l/2G Virasoro algebra was discovered in 1986 [7]. However only recently

[10] it was pointed out that it plays a central role in the understanding of quantum
three-dimensional black holes. The idea is the following.

The first input is that the zero modes L0 and L̄0 of the Virasoro algebra are
related to the mass and spin of anti-de Sitter spacetime as [7],

Ml = L0 + L̄0 −
c

12
, J = L0 − L̄0. (54)

For the black hole [9], these two parameters are related to the inner and outer
horizon via,

5) For those not familiar with the Dirac bracket formalism, see [53] for a complete treatment.
The idea is to find the Poisson bracket acting on a system with constraints. For example, a free
particle in three dimensions with a canonical kinetic term

∫

piq̇
i has the standard Poisson bracket

structure. Suppose we decide to restrict the movement of the particle according to q3 = 0, p3 = 0.
The new Poisson bracket is the same as before with the only modification that the coordinates q3

and p3 are removed. There are cases, however, in which the constraints are complicated functions
of the canonical variables and one can not remove the right coordinates just by inspection. Let
us consider a system with variables za and a Poisson bracket [za, zb] = Jab. Now, we impose
the restrictions φα(z) = 0 such that detCαβ 6= 0 where Cαβ = [φα, φβ ]. The Dirac bracket
[ , ]∗ = [ , ]− [ , χα]Cαβ [χβ, ] is antisymmetric, satisfies the Jacobi identity and is invariant under
the constraints, [X, φα]∗ = 0 for all X .



Ml =
r2
+ + r2

−

8Gl
, J =

2r+r−
8Gl

. (55)

The Virasoro algebra (52) represents a symmetry of the theory, just like the an-
gular momentum algebra, [Li, Lj ] = iεijkLk, is the symmetry algebra of a rotational
invariant Lagrangian. Suppose that the algebra (52) is the symmetry algebra as-
sociated to some conformal field theory which is unitary (L0, L̄0 ≥ 0) and modular
invariant. Modular invariance implies that the partition function,

Z[τ ] = Tr e2πiτ(L0−c/24)−2πiτ̄ (L̄0−c/24), (56)

satisfies

Z[τ ′] = Z[τ ], τ ′ =
aτ + b

cτ + d
, (57)

for any a, b, c, d ∈ Z and ad − bc = 1. The parameter τ is the modular parameter,
or complex structure, of the torus on which the CFT is defined. We recall that the
partition function (56) has a precise interpretation in the black hole manifold. The
Euclidean black hole has the topology of a solid torus whose modular parameter
is given in (19) and L0 + L̄0 is the Hamiltonian of the theory (up to an additive
constant that we discuss below). This is actually implicit in (54).

Since Z[τ ] is modular invariant, we can evaluate Z[−1/τ ] in the limit Im(τ) → 0.
Assuming L0, L̄0 ≥ 0 we obtain,

Z[τ ] ∼
∣

∣

∣

∣

exp
(

2πic

24τ

)
∣

∣

∣

∣

2

. (58)

From (19), τ = iβ/2πl (non-rotating case), and (53) we find exactly the semiclas-
sical Gibbons-Hawking limit (20). (Exercise: generalize this to the rotating case.)
This is the canonical [9,37,38,52] version of the results obtained in [10]. Note that
the limit Im(τ) → 0 corresponds to small β and, according to (18), large values of
M . This is a characteristic of the three dimensional black hole not shared by the
Schwarzschild solution. The temperature in three dimensions decreases with the
mass, the specific heat is positive and the canonical ensemble is well-defined.

A microcanonical calculation follows by writing the partition function (56) in the
form,

Z[τ ] =
∑

L0,L̄0

ρ(L0, L̄0)e
2πiτ(L0−c/24)−2πiτ̄ (L̄0−c/24), (59)

where ρ(L0, L̄0) is the number of states with eigenvalues L0, L̄0. Using the approx-
imation (58) in (59) one can extract the number of states ρ(L0, L̄0) by a contour
integral obtaining,

ρ(L0, L̄0) ∼ e2π
√

cL0/6+2πc
√

cL̄0/6. (60)



This is known as Cardy formula. It is amusing to check that using (53), (54)
and (55), the associated entropy is exactly equal to the Bekenstein-Hawking value
S = A/4G with A = 2πr+ [10].

Actually, the above calculation is true provided the black hole mass is large
enough: Ml >> c/12 (see (54)). The shift −c/12 appearing in (54) (which should
be written as −c/24−c/24) is the source of a number of issues. For unitary theories,
on which the above calculation makes sense, it means that the mass spectrum is
M ≥ −c/12 and thus not only black holes enter in the partition function but
also the conical singularities (particle solutions) introduced in [8]. Curiously when
writing canonical expressions for the Virasoro generators, either using the Liouville
approach [41] or the twisted Sugawara operator [36], one finds M ≥ 0. This looks
fine because the entropy should be associated to black holes spacetimes having
horizons and not to the particle solutions. However, if one restricts the spectrum to
positive masses, then the saddle point approximation (58) is not valid. In summary,
the CFT whose symmetry is generated by (52), and that we assumed existed, does
not seem to be related to general relativity.

We shall end here. See [45,11] for discussions on this last point, [59] for a proposal
to resolve this problem within general relativity, and [11,13,14] for the string theory
side of it.
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