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(Constrained) Quantization Without Tears

R. Jackiw

ABSTRACT

An alternative to Dirac’s constrained quantization procedure is explained.

To accomplish conventional and elementary quantization of a dynamical system, one is instructed to:

begin with a Lagrangian, eliminate velocities in favor of momenta by a Legendre transform that determines

the Hamiltonian, postulate canonical brackets among coordinates and momenta and finally define dynamics

by commutation with the Hamiltonian. But this procedure may fail for several reasons: it may not be

possible to solve for the velocities in terms of the momenta, or it may be that the Hamiltonian equations

do not reproduce the desired dynamical equations. In such cases one is dealing with so-called “singular”

Lagrangians and “constrained” dynamics. Almost half a century ago Dirac developed his method for handling

this situation1 and since that time the subject has defined an area of specialization in mathematical physics,

as is put into evidence by a recent monograph2 and by this series of workshops3.

While Dirac’s approach and subsequent developments can cope with most models of interest, my col-

league Ludwig Faddeev and I realized that in many instances Dirac’s method is unnecessarily cumbersome

and can be streamlined and simplified. We have advertised4 an alternative approach, based on Darboux’s

theorem, wherein one arrives at the desired results — formulas for brackets and for the Hamiltonian —

without following Dirac step by step.

Very specifically, two aspects of the Dirac procedure are avoided. First, when it happens that the

Lagrangian L depends linearly on the velocity ξ̇i for one of the dynamical variables ξi, or even is independent

of ξ̇i, the attempt to define the canonical momentum Πi = ∂L

∂ξ̇i

, and to eliminate ξ̇i in favor of Πi obviously

fails. In the Dirac procedure, one nevertheless defines a canonical momentum and views the ξ̇i-independent

expression ∂L

∂ξ̇i

as a constraint on Πi. In our method, such constraints are never introduced. Second, in

the Dirac procedure constraints are classified and distinguished as first class or second class, primary or

secondary. This distinction is not made in our method; all constraints are held to the same standard.
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It is therefore clear that our approach eliminates useless paperwork, and here I shall give a description

with the hope that this audience of specialists will appreciate the economy of our proposal and will further

adopt and disseminate it.

I shall use notation appropriate to a mechanical system, with coordinates labeled by {i, j, . . .} tak-

ing values in a set of integers up to N , and a summation convention for repeated indices. Field theoretic

generalization is obvious: the discrete quantities {i, j, . . .} become continuous spatial variables. Time depen-

dence of dynamical variables is not explicitly indicated since all quantities are defined at the same time, but

time-differentiation is denoted by an over-dot. Although the language of quantum mechanics is used, with

h̄ scaled to unity, (“commutation,” etc.) ordering issues are not addressed — so more properly speaking

we are describing a classical Hamiltonian reduction of dynamics. Grassmann variables are not considered,

since that complication is a straightforward generalization. Finally total time derivative contributions to

Lagrangians are omitted whenever convenient.

Our starting point is a first-order Lagrangian formulation for the dynamics of interest; i.e. we assume that

the Lagrangian is at most linear in time derivatives. This is to be contrasted with the usual approach, where

the starting point is a second-order Lagrangian, quadratic in time-derivatives, and a first-order Lagrangian is

viewed as “singular” or “constrained.” In fact, just because dynamics is described by first-order differential

equations, it does not mean that there are constraints, and this is a point we insist upon and we view the

conventional position to be inappropriate.

Indeed there are many familiar and elementary dynamical systems that are first-order, without there

being any constraints: Lagrangians for the Schrödinger equation and the Dirac equation are first-order in

time derivatives; in light-cone quantization, where x+ ≡ 1√
2
(t+ x) is the evolution coordinate, dynamics is

first-order in this “time;” the most compact description of chiral bosons in two space-time dimensions is first

order in time5. It is clear that characterizing any of these systems as “singular” or “constrained” reflects

awkward mathematics rather than physical fact.
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Moreover, a conventional second order Lagrangian can be converted to first-order form by precisely the

same Legendre transform used to pass from a Lagrangian to a Hamiltonian. The point is that the formula

H =
∂L

∂q̇
q̇ − L (1)

p ≡ ∂L

∂q̇
(2)

may also be read in the opposite direction,

L(p, q) = p q̇ −H(p, q) (3)

and it is straightforward to verify that Euler-Lagrange equations for the first-order Lagrangian L(p, q) coin-

cide with the Hamiltonian equations based on H(p,q). Thus given a conventional Hamiltonian description

of dynamics, we can always construct a first-order Lagrangian whose configuration space coincides with the

Hamiltonian phase space.

We begin therefore with a general first-order Lagrangian.

L = ai(ξ)ξ̇
i − V (ξ) (4)

Note that ai has the character of a vector potential (connection) for an Abelian gauge theory, in that

modifying ai(ξ) by a total derivative ai → ai + ∂
∂ξi θ does not affect dynamics, since the Lagrangian changes

by a total time-derivative. Observe further that when a Hamiltonian is defined by the usual Legendre

transform, velocities are absent from the combination ∂L

∂ξ̇i

ξ̇i − L, since L is first order in ξ̇i, and V may be

identified with the Hamiltonian.

H =
∂L

∂ξ̇i
ξ̇i − L = V (5)

Thus the Lagrangian in (4) may be presented as

L = ai(ξ)ξ̇
i −H(ξ) (6)

and the first term on the right side defines the “canonical one-form” ai(ξ) dξ
i ≡ a(ξ).

To introduce our method in its simplest realization, we begin with a special case, which in fact will be

shown to be quite representative: instead of dealing with a general ai(ξ), we take it to be linear in ξi.

ai(ξ) =
1

2
ξjωji (7)
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The constant matrix ωij is anti-symmetric, since any symmetric part merely contributes an irrelevant total

time-derivative to L and can be dropped. The Euler-Lagrange equation that follows from (6) and (7) is

ωij ξ̇
j =

∂

∂ξi
H(ξ) (8)

The development now goes to two cases. The first case holds when the anti-symmetric matrix ωij

possesses an inverse, denoted by ωij , in which case ωij must be even-dimensional, i.e. the range N of

{i, j, . . .} is 2n = N . It follows from (7) that ξi satisfies the evolution equation

ξ̇i = ωij ∂

∂ξj
H(ξ) (9)

and there are no constraints. Constraints are present only in the second case, when ωij has no inverse, and

as a consequence possesses N ′ zero modes zi
a, a = 1, . . . , N ′. The system is then constrained by N ′ equations

in which no time-derivatives appear.

zi
a

∂

∂ξi
H(ξ) = 0 (10)

On the space orthogonal to that spanned by the {za}, ωij possesses an even-dimensional (= 2n) inverse, so

in this case N = 2n+N ′.

For the moment we shall assume that ωij does possess an inverse and that there are no constraints. The

second, constrained case will be dealt with later.

With the linear form for ai(ξ) and in the absence of constraints all dynamical equations are contained

in (9). Brackets are defined so as to reproduce (9) by commutation with the Hamiltonian.

ξ̇i = ωij ∂

∂ξj
H(ξ) = i

[

H(ξ), ξi
]

= i
[

ξj , ξi
] ∂

∂ξj
H(ξ)

This implies that we should take

[

ξi, ξj
]

= i ωij (11a)

or for general functions of ξ

[A(ξ), B(ξ)] = i
∂A(ξ)

∂ξi
ωij ∂B(ξ)

∂ξj
(11b)
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It is reassuring to verify that a conventional dynamical model, when presented in the form (3), is a special

case of the present theory with ξi comprising the two-component quantity
(

p
q

)

and ωij the anti-symmetric

2 × 2 matrix ǫij , ǫ12 = 1. Eq. (11b) then implies ⌈q, p⌋ = i.

Next let us turn to the more general case with ai(ξ) an arbitrary function of ξi, not depending explicitly

on time. The Euler-Lagrange equation for (6) is

fij(ξ)ξ̇
j =

∂

∂ξi
H(ξ) (12)

where

fij(ξ) =
∂

∂ξi
aj(ξ) −

∂

∂ξj
ai(ξ) (13)

fij behaves as a gauge invariant (Abelian) field strength (curvature) constructed from the gauge-variant

potential (connection). It is called the “symplectic two-form,” 1
2 fij(ξ) dξ

i dξj = f(ξ); evidently it is exact:

f = da, and therefore closed: df = 0. In the non-singular, unconstrained situation the anti-symmetric N×N

matrix fij has the matrix inverse f ij , hence N = 2n, and (12) implies

ξ̇i = f ij ∂

∂ξj
H(ξ) (14)

This evolution equation follows upon commutation with H provided the basic bracket is taken as

[

ξi, ξj
]

= if ij(ξ) (15)

The Bianchi identity satisfied by fij ensures that (15) obeys the Jacobi identity.

The result (15) and its special case (11b) can also be derived by an alternative, physically motivated

argument. Consider a massive particle, in any number of dimensions, moving in an external electromagnetic

field, described by the vector potential ai(ξ) and scalar potential V (ξ). The Lagrangian and Hamiltonian

are expressions familiar from the theory of the Lorentz force,

L =
1

2
mξ̇iξ̇i + ai(ξ)ξ̇

i − V (ξ) (16a)

H =
1

2m
(pi − ai(ξ))

2 + V (ξ) (16b)
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with pi conjugate to ξi. It is seen that (4), (5) and (6) correspond to the m → 0 limit of (16a) and (16b).

Owing to the 0(m−1) kinetic term in (16b), the limit of vanishing mass can only be taken if pi −ai(ξ) ≡ mξ̇i

is constrained to vanish. Adopting for the moment the Dirac procedure, we recognize that vanishing of mξ̇i

is a second class constraint, since the constraints do not commute,

[

mξ̇i, mξ̇j
]

= [pi − ai(ξ), pj − aj(ξ)]

= i fij(ξ) 6= 0 (17)

and computing the Dirac bracket [ξi, ξj ] regains (15).

In this way we see that what one would find by following Dirac is also gotten by our method, but we

arrive at the goal much more quickly. Also the above discussion gives a physical setting for Lagrangians of

the form (6): when dealing with a charged particle in an external magnetic field, in the strong field limit the

Lorentz force term — the canonical one-form — dominates the kinetic term, which therefore may be dropped

in first approximation. One is then left with quantum mechanical motion where the spatial coordinates fail

to commute by terms of order of the inverse of the magnetic field. More specifically, with constant magnetic

field B along the z-axis, energy levels of motion confined to the x-y plane form the well-known Landau bands.

For strong fields, only the lowest band is relevant, and further effects of the additional potential V (x, y) are

approximately described by the “Peierls Substitution”6. This states that the low-lying energy eigenvalues

are

E =
B

2m
+ ǫn (18)

where B
2m

is the energy of the lowest Landau level in the absence of V , while the ǫn are eigenvalues of the

operator V (x, y) (properly ordered!) with

i[x, y] =
1

B
(19)

Clearly the present considerations about quantizing first-order Lagrangians give a new derivation7 of this

ancient result from condensed matter physics.6 [One may also verify (18) by forming mH from (16b) and

computing ǫn perturbatively in m.8]
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While the development starting with arbitrary ai(ξ) and unconstrained dynamics appears more general

than that based on the linear, special case (7), the latter in fact includes the former. This is because by

using Darboux’s theorem one can show that an arbitrary vector potential [one-form ai dξ
i] whose associated

field strength [two-form d(ai dξ
i) = 1

2 fij dξ
i dξj ] is non-singular, in the sense that the matrix fij possesses

an inverse, can be mapped by a coordinate transformation onto (7) with ωij non-singular. Thus apart from

a gauge term, one can always present ai(ξ) as

ai(ξ) =
1

2
Qk(ξ)ωkℓ

∂Qℓ(ξ)

∂ξi
(20a)

correspondingly fij(ξ) as

fij(ξ) =
∂Qk(ξ)

∂ξi
ωkℓ

∂Qℓ(ξ)

∂ξj
(20b)

and in terms of new coordinates Qi the curvature is ωij — a constant and non-singular matrix. Moreover,

by a straightforward modification of the Gram-Schmidt argument a basis can be constructed such that the

antisymmetric N ×N matrix ωij takes the block-off-diagonal form

ωij =

(

0 I

−I 0

)

ij

(21)

where I is the n-dimensional unit matrix (N=2n). [With these procedures one can also handle the case when

ai is explicitly time-dependent — a transformation to constant ωij can still be made.] In the Appendix we

present Darboux’s theorem adopted for the present application, and we explicitly construct the coordinate

transformation Qi(ξ). The coordinates in which the curvature two-form becomes (21) are of course the

canonical coordinates and they can be renamed pi, q
i, i = 1, . . . , n.

We conclude the discussion of non-singular, first-order dynamics by recording the functional integral for

the quantum theory. The action of (4) obviously is

I =

∫

ai(ξ) dξ
i −

∫

H(ξ) dt (22)

and the path integral involves, as usual, the phase exponential of the action. The measure however is

non-minimal; the correct prescription is

Z =

∫

ΠiDξi det
1

2 fjk exp i I . (23)
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The det
1

2 fij factor can be derived in a variety of ways: One may use Darboux’s theorem to map the problem

onto one with constant canonical curvature (21), where the measure is just the Liouville measure
∏2n

i=1 Dξi =

∏n
i=1 Dpi Dqi, and the Jacobian of the transformation is seen from (20b) to be det

1

2 fij . Alternatively one

may refer to our derivation based on Dirac’s second class constraints, eqs. (16), (17), and recall that the

functional integral in the presence of second class constraints involves the square root of the constraints’

bracket9. By either argument, one arrives at (23), which also exhibits the essential nature of the requirement

that fij be a non-singular matrix.

We now turn to the second, more complicated case, where there are constraints because fij is singular.

It is evident from the Appendix that the Darboux construction may still be carried out for the non-singular

projection of fij , which is devoid of the zero-modes (10). This results in the Lagrangian

L =
1

2
ξi ωij ξ̇

j −H(ξ, z) (24)

Here ωij may still be taken in the canonical form (21), but now in the Hamiltonian there are N ′ additional

coordinates, denoted by za, a = 1, . . . , N ′, arising from the N ′ zero modes of fij and leading to N ′ constraint

equations.

∂

∂za

H(ξ, z) = 0 (25)

This is the form that (10) takes in the canonical coordinates achieved by Darboux’s theorem. The constrained

nature of the za variables is evident: they do not occur in the canonical one-form 1
2 ξ

i ωij ξ̇
j dt and there is

no time-development for them.

In the next step, we examine the constraint equations (25) and recognize that for the za occurring non-

linearly in H(ξ, z) one can solve (25) for the za. [More precisely, this needs det ∂2H(ξ,z)
∂za ∂zb

6= 0.] On the other

hand, when H(ξ, z) contains a constrained za variable linearly , Eq. (25) does not permit an evaluation of

the corresponding za, because (25) in that case is a relation among the ξi, with za absent from the equation.

Therefore using (25), we evaluate as many za’s as possible, in terms of ξi’s and other za’s, and leave for

further analysis the linearly occurring za’s. Note that this step does not affect the canonical one-form in the

Lagrangian.
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Upon evaluation and elimination of as many za’s as possible, we are left with a Lagrangian in the form

L =
1

2
ξiωij ξ̇

j −H(ξ) − λkΦk(ξ) (26)

where the last term arises from the remaining, linearly occurring za’s, now renamed λk, and the only true

constraints in the model are the Φk, which enter multiplied by Lagrange multipliers λk. To incorporate the

constraints, it is not necessary to classify them into first class or second class. Rather we solve them, by

satisfying the equations

Φk(ξ) = 0 (27)

which evidently give relations among the ξi — evaluating some in terms of others. This procedure obviously

eliminates the last term in (26) and it reduces the number of ξi’s below the 2n that are present in (26); also

it replaces the diagonal canonical one-form by the expression āi(ξ) dξ
i, where i ranges over the reduced set,

and āi is a non-linear function obtained by inserting the solutions to (27) into (26).

The Darboux procedure must now be repeated: the new canonical one-form āi(ξ) dξ
i, which could be

singular, is brought again to diagonal form, possibly leading to constraint equations, which must be solved.

Eventually one hopes that the iterations terminate and one is left with a completely reduced, unconstrained

and canonical system.

Of course there may be the technical obstacles to carrying out the above steps: solving the constraints

may prove too difficult, constructing the Darboux transformation to canonical coordinates may not be possi-

ble. One can then revert to the Dirac method, with its first and second class constraints, and corresponding

modifications of brackets, subsidiary conditions on states, and non-minimal measure factors in functional

integrals.

I conclude my presentation by exhibiting our method in action for electromagnetism coupled to mat-

ter, which for simplicity I take to be Dirac fields ψ, since their Lagrangian is already first order. Also I

include a gauge non-invariant mass term for the photon, to illustrate various examples of constraints. The

electromagnetic Lagrangian in first-order form reads

L =

∫

dr

{

−E · Ȧi + iψ∗ψ̇ − 1

2

(

E2 + B2 + µ2A2
)

}
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−HM ((∇∇∇∇− iA)ψ)

−
∫

dr

{

A0 (ρ−∇∇∇∇ ·E) − µ2

2
A 2

0

}

(28)

Here A is the vector potential with B ≡ ∇∇∇∇× A, A0 the scalar potential that is absent from the symplectic

term, µ the photon mass. The matter Hamiltonian is not specified beyond an indication that coupling to A

is through the covariant derivative, while ρ = ψ∗ψ. The Lagrangian is in the form (24); when µ is non-zero

the constrained variable A0 enters quadratically and

δH

δA0(r)
= 0 (29)

leads to the evaluation of A0

A0 =
1

µ2
(ρ−∇∇∇∇ · E) (30)

so that the unconstrained Lagrangian becomes

L =

∫

dr

{

−E · Ȧ + iψ∗ψ̇ − 1

2

(

E2 + B2 + µ2A2 +
1

µ2
(ρ−∇∇∇∇ ·E)

2

)

}

−HM ((∇∇∇∇− iA)ψ) (31)

The canonical pairs are identified as (−E,A) and (iψ∗, ψ). In the absence of a photon mass, the Lagrangian

(28) is of the form (26), with one Lagrange multiplier λ = A0. Eq. (29) then leads to the Gauss law

constraint.

∇∇∇∇ ·E = ρ (32)

To solve the constraint, we decompose both E and A into transverse and longitudinal parts,

E = ET +
∇∇∇∇√
−∇2

E (33)

A = AT +
∇∇∇∇√
−∇2

A (34)

∇∇∇∇ ·ET = ∇∇∇∇ · AT = 0

and (32) implies E = −1√
−∇2

ρ. Inserting this into (28) at µ2 = 0, we are left with

L =

∫

dr

{

−ET · ȦT + ρ
1√
−∇2

Ȧ+ iψ∗ψ̇ − 1

2

(

E 2
T + B2 − ρ

1

∇2
ρ

)

}

−HM

((

∇∇∇∇− iAT − i
∇∇∇∇√
−∇2

A

)

ψ

)

(35a)
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While the constraint has been eliminated, the canonical one-form in (35a) is not diagonal. The Darboux

transformation that is now performed replaces ψ by
(

exp i 1√
−∇2

A
)

ψ. This has the effect of canceling

ρ 1√
−∇2

Ȧ against a contribution coming from iψ∗ψ̇ and eliminating A from the Hamiltonian (since B =

∇∇∇∇× AT ). We are thus left with the Coulomb-gauge Lagrangian

L =

∫

dr

{

−ET · ȦT + iψ∗ψ̇ − 1

2

(

E 2
T + B2 − ρ

1

∇2
ρ

)

}

−HM ((∇∇∇∇− iAT )ψ) (35b)

without ever selecting the Coulomb gauge! The canonical pairs are (−ET ,AT ) and (iψ∗, ψ).

We recall that the Dirac approach would introduce a canonical momentum Π0 conjugate to A0 and

constrained to vanish. The constraints (30) or (32) would then emerge as secondary constraints, which must

hold so that [H,Π0] vanish. Finally a distinction would be made between the µ 6= 0 and µ = 0 theories:

in the former the constraint is second class, in the latter it is first class.9 None of these considerations are

necessary for successful quantization.

Our method also quantizes very efficiently Chern-Simons theories, with or without a conventional kinetic

term for the gauge field10 [indeed the phase space reductive limit of taking the kinetic term to zero, as in (16),

(17) above, can be clearly described11] as well as gravity theories in first order form, be they the Einstein

model12 or the recently discussed gravitational gauge theories in lower dimensions13.

Finally, we record a first order Lagrangian L for Maxwell theory with external, conserved sources

(ρ, j), ρ̇ + ∇∇∇∇ · j = 0, which depends only on field strengths (E, B) (rather than potentials) and is self-dual

in the absence of sources.

L =

∫

dr dr′
(

Ėi(r) + ji(r)
)

ωij (r − r′)Bj(r′)

− 1

2

∫

dr
(

E2 + B2
)

−
∫

dr
(

λ1(ρ−∇∇∇∇ · E) + λ2∇∇∇∇ · B
)

(36)

ωij(r) ≡ ǫijk ∂k

∇2
δ(r) =

1

4π
ǫijk r

k

r3
(37)

Varying the E and B fields as well as the two Lagrange multipliers λ1,2 gives the eight Maxwell equations.

The duality transformation E → B, B → −E, supplemented by λ1 → −λ2, λ2 → λ1 changes the Lagrangian

by a total time derivative, when there are no sources. The canonical one-form is spatially non-local, owing

to the presence of ωij , which has the inverse

ωij(r) = −ǫijk ∂k δ(r) (38)
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when restricted to transverse fields — these are the only unconstrained degrees of freedom in (36). It then

follows that the non-vanishing commutator is the familiar formula.

[

E i
T (r), B j

T (r′)
]

= −i ǫijk ∂k δ(r − r′) (39)

This self-dual presentation of electrodynamics is similar to formulations of self-dual fields on a line5 and on

a plane10.

Appendix

Darboux’s Theorem

We give a constructive derivation of Darboux’s Theorem. Specifically we show that subject to regularity

requirements stated below, any vector potential (connection one-form) ai(ξ) may be presented, apart from

a gauge transformation, as

ai(ξ) =
1

2
Qm(ξ)ωmn

∂Qn(ξ)

∂ξi
(A.1)

and correspondingly the field strength fij(ξ) (curvature two-form) as

fij(ξ) =
∂Qm(ξ)

∂ξi
ωmn

∂Qn(ξ)

∂ξj
(A.2)

with ωmn constant and anti-symmetric. The proof also gives a procedure for finding Qm(ξ). It is then

evident that a coordinate transformation from ξ to Q renders fij constant and a further adjustment of the

basis puts ωij in the canonical form (21).

We consider a continuously evolving transformation Qm(ξ; τ), to be specified later, with the property

that at τ = 0, it is the identity transformation

Qm(ξ; 0) = ξm (A.3a)

and at τ = 1, it arrives at the desired Qm(ξ), (which will be explicitly constructed).

Qm(ξ; 1) = Qm(ξ) (A.3b)
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Qm(ξ; τ) is generated by vm(ξ; τ), in the sense that

∂

∂τ
Qm(ξ; τ) = vm (Q(ξ; τ); τ) (A.4)

Note, that vm depends explicitly on τ . Also we need to define the transform by Qm(ξ; τ) of quantities

relevant to the argument: connection one-form, curvature two-form etc. The definition is standard: the

transform, denoted by TQ, acts by

TQ ai(ξ) = am(Q)
∂Qm

∂ξi
(A.5a)

TQ fij(ξ) = fmn(Q)
∂Qm

∂ξi

∂Qn

∂ξj
(A.5b)

To give the construction, we consider the given ai(ξ) to be embedded in a one-parameter family ai(ξ; τ),

such that at τ = 0 we have ai(ξ) and at τ = 1 we have 1
2 ξ

m ωmi, where ωmi is constant and anti-symmetric.

ai(ξ; 0) = ai(ξ) (A.6a)

ai(ξ; 1) =
1

2
ξm ωmi (A.6b)

It is then true that

d

dτ
(TQ ai(ξ; τ)) = TQ

(

Lv ai(ξ; τ) +
∂

∂τ
ai(ξ; τ)

)

(A.7)

where Lv is the Lie derivative, with respect to the vector vm that generates the transformation, see (A.4).

Eq. (A.7) is straightforwardly verified by differentiating with respect to τ , and recalling that both the

transformation and ai are τ -dependent. Next we use the identity14

Lv ai = vn fni + ∂i(v
nan) (A.8)

and observe that when the generator is set equal to

vn(ξ; τ) = −fni(ξ; τ)
∂

∂τ
ai(ξ; τ) (A.9)

Eq. (A.7) leaves

d

dτ
(TQ ai) = TQ (∂i(v

nan)) (A.10)
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Thus d
dτ

(TQai) is a gauge transformation, so that TQai at τ = 0, i.e. ai(ξ), differs from its value at τ = 1,

i.e. 1
2Q

m(ξ)ωmn
∂Qn(ξ)

∂ξi , by a gauge transformation. This is the desired result, and moreover Qm(ξ; τ)

and Qm(ξ) ≡ Qm(ξ; 1) are here explicitly constructed from the algebraic definition (A.9) for vn [once an

interpolating ai(ξ; τ) is chosen], and integration of (A.4) (the latter task need not be easy).

Clearly (A.9) requires that fij(ξ; τ) possesses the inverse f ij(ξ; τ); hence both the starting and ending

forms, fij(ξ) and ωij , must be non-singular. Also fij(ξ; τ) must remain non-singular for all intermediate τ .

In fact this is not a restrictive requirement, because one may always choose ωij to be the value of fij(ξ) at

some point ξ = ξ0, and then by change of basis transform ωij to any desired form.

This description of Darboux’s theorem was prepared with the assistance of B. Zwiebach, whom I thank.
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