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Abstract. The Einstein equations with a negative cosmological constant admit 
black hole solutions which are asymptotic to anti-de Sitter space. Like black 
holes in asymptotically flat space, these solutions have thermodynamic 
properties including a characteristic temperature and an intrinsic entropy 
equal to one quarter of the area of the event horizon in Planck units. There are 
however some important differences from the asymptotically flat case. A black 
hole in anti-de Sitter space has a minimum temperature which occurs when its 
size is of the order of the characteristic radius of the anti-de Sitter space. For  
larger black holes the red-shifted temperature measured at infinity is greater. 
This means that such black holes have positive specific heat and can be in 
stable equilibrium with thermal radiation at a fixed temperature. It also implies 
that the canonical ensemble exists for asymptotically anti-de Sitter space, 
unlike the case for asymptotically fiat space. One can also consider the 
microcanonical ensemble. One can avoid the problem that arises in asymptoti- 
cally flat space of having to put the system in a box with unphysical perfectly 
reflecting walls because the gravitational potential of anti-de Sitter space acts 
as a box of finite volume. 

1. Introduction 

The first indication that black holes have thermodynamic properties came with the 
discovery that in the classical theory of general relativity the area of the event 
horizon [ t l  (or equivalently, the square of the irreducible mass [2]) never 
decreases. There is an obvious analogy with the second law of thermodynamics 
with the area of the event horizon playing the role of entropy. There were also 
analogies to the zeroth and first laws of thermodynamics in which the rote of 
temperature was played by a quantity called the surface gravity ~c which measured 
the strength of the gravitational field at the event horizon [3]. These similarities 
led Bekenstein [4] to suggest that some multiple of the area of the event horizon, 
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measured in Planck units, should be identified as the physical entropy of the black 
hole. This proposal would lead to inconsistencies and violations of the second law 
if, as was thought at the time, black holes could absorb particles but could not emit 
anything. In that case black holes could not be in equilibrium with thermal 
radiation at any non-zero temperature. However this difficulty was removed when 
it was discovered that, when quantum effects were taken into account, a black hole 
would create and emit particles as if it were a hot body with a temperature of ~c/2rc 

1 2 [5]. It then followed from the first law that the entropy of a black hole was -~mpA, 
where A is the area of the event horizon and mp= G- 1/2 is the Planck mass in units 
in which h = c = k = 1. A deeper understanding of these thermodynamic properties 
and a direct derivation of the entropy came with the realization that they were a 
consequence of the periodicity in the imaginary time coordinate needed to remove 
the singularities in the Euclidean (i.e. positive-definite) versions of black hole 
metrics [6-8]. 

The black holes described above tend asymptotically to flat space. However, 
one can also have black hole solutions to the Einstein equations with a 
cosmological constant A which are asymptotic to de Sitter space (if A >0) or to 
anti-de Sitter space (if A < 0). The former case has been investigated in [9]. It was 
found that a black hole in a de Sitter space would emit particles with a 
temperature determined by the surface gravity of the black hole horizon. However, 
there was also a cosmological event horizon which was present even in the case of 
no black hole and which also emitted particles with a temperature determined by 
its surface gravity. Thermal equilibrium was possible only if these two surface 
gravities were equal which occurred only in the degenerate case of the Nariai 
metric [10] which is the analytic continuation of S 2 x S 2. 

Anti-de Sitter space has generally been regarded as of tittle physical interest for 
two reasons. First, the negative value of A, if interpreted as a vacuum energy, 
corresponds to negative energy density. Second, anti-de Sitter space has the 
topology S 1 x R 3, where the S 1 is timelike. It is therefore periodic in time and 
contains closed timelike curves. These can be removed by passing to the universal 
covering space, but this is not globally hyperbolic, that is to say that Cauchy data 
on a spacelike surface determines the evolution of the system only in a region 
which is bounded by a null hypersurface called a Cauchy horizon [11]. Thus to 
specify physics in anti-de Sitter space one has to specify not only the initial 
configuration but also boundary conditions which describe radiation which comes 
in from infinity. Nevertheless, despite these difficulties, there have been indications 
in recent years that anti-de Sitter space may have some physical significance. The 
first of these was that extended theories of supergravity in which the O(N) group is 
gauged have anti-de Sitter space as their ground or most symmetric state. The 
second is that it has been possible to extend Witten's proof for the positive mass 
theorem [12] to anti-de Sitter space [13, 14] and to supergravity [15, t6]. These 
results show that asymptotically anti-de Sitter solutions are stable even though the 
potentials that appear in the theories are unbounded below. We shall therefore 
consider the quantum mechanical and thermodynamic properties of black holes in 
anti-de Sitter space. The results we shall find are broadly similar to those for black 
holes in asymptotically fiat or de Sitter spaces but there are some important 
differences. 
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Like flat space but unlike de Sitter space, anti-de Sitter space has no natural 
temperature associated with it. The most symmetric "vacuum state" is therefore 
not periodic in the imaginary time coordinate though it is periodic in real time. 
This is true even if one works in the covering space. As in flat space, one can 
construct thermal states at any temperature T by imposing a periodicity fl = T -  1 
in imaginary time. The gravitational mass of such a thermal state in flat space 
would be infinite if it has infinite volume and therefore the state would collapse. 
Even if one restricted the volume to be finite by putting it in some sort of box, the 
state would still be unstable to the formation of a black hole, no matter how low 
the temperature [17, 18]. Moreover, although a black hole can be in equilibrium 
with thermal radiation at the same temperature, this equilibrium is unstable if the 
temperature is held constant: if the black hole were to get a bit more mass, its 
temperature would go down, the rate of absorption would be greater than the rate 
of emission and the black hole would continue to grow. This instability means that 
the canonical ensemble cannot be defined in asymptotically flat space if gravi- 
tational effects are included. Instead, one has to use a microcanonical ensemble 
[17] in which a certain amount of energy is placed in an insulated box though even 
this is unphysical because one cannot construct a box that will prevent gravitons 
from escaping. If one ignores this difficulty, one finds that one can have a black 
hole in stable equilibrium with thermal radiation provided that the energy 
E>(2-213-15'*rc-2gm~V)l/5 , where V is the volume of the box and g is the 
effective number of spin states. 

In anti-de Sitter space the gravitational potential relative to any origin increases 
at large spatial distances from the origin. This means that the locally measured 
temperature of a thermal state decreases and that the total energy of the thermal 
radiation is finite without any need to put it in a box. In fact the gravitational 
potential causes "confinement" of nonzero rest mass particles and prevents them 
from escaping to infinity. Zero rest mass particles can escape to infinity but in a 
thermal state the incoming and outgoing fluxes at infinity are equal. We find that if 

the temperature is less than T o = ~-~g ( - A )  l/z, thermal radiation is stable against 

collapse to form a black hole. At temperatures higher than T O there are two values 
of the mass of a black hole that can be in equilibrium with the thermal radiation. 
The equilibrium at fixed temperature is unstable for the lower of these masses but 

T. 1 ( A~ 1/2 is locally stable for the higher one. At T>~ I = U \ -  3] , if IA[~rn 2 as we 

assume, the configuration with a black hole and thermal radiation has a lower free 
energy than the configuration with just thermal radiation. At a temperature T > T z 

( -m~A)  1/4, there is no equilibrium configuration without a black hole. 

One can also consider a microcanonical ensemble in which one puts a certain 
amount  of energy into asymptotically anti-de Sitter space. On does not need a box 
with unphysicaI walls but one has to impose the boundary condition that the 
incoming flux of zero rest mass particles at infinity is equal to the outgoing flux. If 
the energy E < E  o ~(2-213-154grn~)l/5(-A/3)-3/lo,  the dominant configuration 
will be that of thermal radiation. If E o < E < E ~ I . 3 1 4 E o ,  there will be a 
configuration with a black hole and thermal radiation which is locally stable but is 
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less probable than thermal radiation alone. If E I < E < E z ~ my2( - A)- 1/2, the black 
hole configuration will be more probable but the pure radiation will still be locally 
stable. If E > E z, the pure radiation configuration will always collapse. 

There are also charged and rotating black hole solutions in anti-de Sitter space 
which contribute to the grand canonical ensemble in which the electric potential 
and rate of rotation act as chemical potentials for charge and angular momentum 
respectively. These generalizations behave much as one would expect from the 
asymptotically flat space case, but one difference is that in anti-de Sitter space one 
can have a rotating black hole in equilibrium with rotating radiation provided that 
the angular momentum of the black hole is sufficiently small, whereas in 
asymptotically flat space such an equilibrium is never possible because the 
rotational velocity of the radiation would have to exceed that of light at large 
distances from the black hole. 

The plan of this paper is as follows. In Sect. 2 we adopt the Euclidean 
formulation of quantum theory in anti-de Sitter space. We calculate the Euclidean 
action of a Schwarzschild-anti-de Sitter solution. We use these results in Sect. 3 to 
study the canonical ensemble. We find that the black hole has an intrinsic entropy 
equal to a quarter of the area of the event horizon, as in asymptotically flat space. 
In Sect. 4 we investigate the microcanonical ensemble. 

2. Euclidean Formulation 

The metric of the covering space of anti-de Sitter space can be written in the static 
form 

ds 2 = - Vdt 2 + V -  1dr2 + r2(dO 2 -t- sin 20d(p2), (2.1) 

F 2 
V = 1 + b-Z-, (2.2) 

b - ( - 3 )  1/z. (2.3) 

Anti-de Sitter space can be obtained from this metric by identifying t periodically 
with period 7 = 2rob. A timelike geodesic through the origin returns to the origin 
after a half period y/2. A null geodesic does not return to the origin but escapes to 
infinity. However one can impose the boundary condition that a zero rest mass 
particle should also return to the origin after a half period 7/2. 

The substitution z = it makes the metric (2.1) Euclidean, i.e. positive definite. 
The most natural and symmetric vacuum state for quantum fields on the anti-de 
Sitter background is defined by a path integral over field configurations which go 
to zero at large distances in the Euclidean anti-de Sitter metric. This means that 
the Green functions will be solutions of elliptic equations in the Euclidean space 
which vanish at large distances. When analytically continued to the Lorentzian 
section of anti-de Sitter space, these Green functions will be periodic in t with 
period 7- One can also embed anti-de Sitter space conformally into half of the 
static Einstein universe, that is, into the product of half of the spatial three-sphere 
sections times the time axis. The anti-de Sitter vacuum state for conformally 
invariant fields is then the state induced from the natural vacuum state in the 
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Einstein universe. The reason that the Green functions are periodic is that particles 
pass right around the Einstein cylinder and return to their original positions in 
space after a time 7. 

One can construct thermal states in anti-de Sitter space by periodically 
identifying the imaginary time coordinate z with period fi = T -  1. These states will 
be in thermal equilibrium in the static coordinate system (2.1) with a locally 
measured temperature 

~oc = fi- 1 V-  1/2 (2.4) 

The local temperature is red-shifted by the gravitational potential and decreases 
like r -  ~ for r >  b. One would therefore expect the thermal energy density to go 
down like r -4  for zero rest mass particles and faster for particles with rest mass. In 
the case of conformally invariant particles, one can verify this by taking a thermal 
state on the Einstein universe and conformally transforming. The resultant energy- 
momentum tensor is 

T~" = A3~ + f ( T ) V -  2 -~ u -o (6, - 4C5o0v), (2.5) 

7~ 2 
where f ( T ) =  ~-dgT4+ O(b-2 T2). The first constant term arises from the confor- 

mal anomaly and may be regarded as a renormalization of the cosmological 
constant A. The second term has the form of a perfect fluid with P = ½# and # oc r - 4  
for r > b. Thus the total energy will be finite. 

The Schwarzschild-anti-de Sitter metric has the form (2.1), where now 

2M r 2 
V= 1 - m2 ~ + l)~-. (2.6) 

This has a horizon at r=r+, where V(r+)=0. The substitution z = i t  makes the 
metric positive definite for r > r+. The apparent  singularity at r = r+ is just like the 
singularity at the origin of polar coordinates and can be removed if-c is regarded as 
an angular coordinate with period 

4rcb2r + 
fi = b2 + 3r2+ . (2.7) 

Thus, as in asymptotically flat space, a black hole has a natural temperature 
associated with it although in this case the locally measured temperature decreases 
indefinitely the further one is from the black hole. F rom the formula (2.7) one can 
see that fi has a maximum value of 2rc3-1/2b and therefore T has a minimum value 
of To=(2n)-131/2b-1 when r+=ro=3-1/Zb.  For  r+>ro ,  the temperature T 
increases with the mass 

(2.8) M=½m r+ (1+ b2 J 

One can compute the difference between the Euclidean action of the black hole 
metric and that of anti-de Sitter space identified with the same physical period in 
imaginary time. The calculation is similar to that in asymptotically flat space [8], 
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but in this case the contribution of the surface term is zero. The action comes from 
the difference in four-volumes of the two metrics and is 

2?,2 2 2 
I =  nmp +(b - r + )  (2.9) 

b 2 + 3r2+ 

For  small values of r+ or M, this is the same as the flat space result but the action 
has a maximum when r + = r  0 and becomes negative when r+ >b.  We shall 
investigate the physical implications of this formula for the action in the following 
sections. 

3. The Canonical Ensemble 

The canonical ensemble is defined by a path integral over all matter fields and 
metrics which tend asymptotically respectively to zero and to anti-de Sitter space 
identified periodically in • with period/3. The dominant contribution to the path 
integral is expected to come from metrics which are near classical solutions to the 
Einstein equations. Periodically identified anti-de Sitter space is one of these and 
we take it to be the zero of action and energy. The path integral over the matter 
fields and metric fluctuations on the anti-de Sitter background can be regarded as 
giving the contribution of thermal radiation in anti-de Sitter space to the partition 
function Z. For a conformally invariant field this will be 

T 7~4 
logZ = 3~z2b 3 ! T -  2 f ( T ) d T  = -90 g(b/fi)3 + O(b/fl). (3.1) 

The energy of the thermal radiation will be 

( E )  = - l o g Z =  3nzbaf(T) ~ ~gT~*b 3 . (3.2) 

So far the gravitational effect of thermal radiation has been neglected. One can 
estimate this by solving the Einstein equations with a A term for a perfect fluid 
with i P = g # .  One finds that solutions exist if the mass of the fluid is less than some 
critical value M 2 which can be estimated to be of order m~b. This would 
correspond to a temperature 

T2~ , , -  114~112~-- 112 (3.3) 
1:1 " ~ p  ~ • 

Thermal radiation at a temperature greater than T 2 would not be able to support  
itself against its self gravity and would collapse to form a black hole. 

The Schwarzschild-anti-de Sitter solution is probably the only other non- 
singular positive-definite solution of the classical equations that satisfies the 
periodic boundary conditions. The solution exists only if /~<flo =2n3-1/2b,  i.e. 
only for temperatures T >  T O =(2re)-~31/2b - 1 

The Euclidean action for a black hole solution gives a contribution to log Z of 

logZ = - I = - m2nr2(bZ - rz+) 
b2 + 3r2+ (3.4) 
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The expectation value of the energy is 

( E )  = - - ~  log Z 

-grnvr+ 1+ = M .  

The entropy is 

(3.5) 

N=t~ffE) 1 z z + ogZ=msrr + 

=¼m2A, (3.6) 

where A is the area of the event horizon. Thus the relation between entropy and 
area is the same as in asymptotically flat space. For large M, 

A ~ 4rc(2m~- 2b2M)2/3 (3.7) 

This means that the density of states N(M) for the black hole grows like 
exp [n(2mpb2M)2/3]. This is sufficiently slow that the integral defining the partition 
function 

Z = ~ N(M)e-M/rdM (3.s) 

converges. This shows that the canonical ensemble in asymptotically anti-de Sitter 
space is well behaved. In asymptotically flat space the density of black hole states 
goes as exp(4rcm22M 2) and so the canonical ensemble is pathological. 

For temperatures T <  To, the only possible equilibrium is thermal radiation 
without a black hole. The free energy is negative and is given by 

7~ 4 
f = - r logZ = - 9-0 gb3 T4 + O(br2) (3.9) 

for conformally invariant fields. 
If T >  T o, there are two possible black hole masses that can be in equilibrium 

with thermal radiation. The lower of these has negative specific heat OM/OT. It is 
therefore unstable to decay either into pure thermal radiation or to the larger 
value of the black hole mass. The lower value of the mass also has positive free 
energy which means that it is less probable than pure thermal radiation. The 
higher value of the mass has positive specific heat and is therefore at least locally 
stable. If 

r o < T <  T 1 =(nb)- 1, (3.10) 

the free energy of the black hole is positive so this configuration would reduce its 
free energy if the black hole evaporated completely. The tunneling probability for 
this to occur will be of the form 

F=Ae  -B, (3.11) 

where A is some determinant and B is the difference between the actions of the 
lower and higher mass solutions at the same temperature. If T~> T1, the free energy 
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of the higher mass black hole solution will be less than that of pure radiation. The 
pure radiation will then tend to tunnel to the black hole configuration at the rate 
given by (3.11), where now B is the action of lower mass solution. Finally, if T > T 2, 
the radiation will collapse in a time-scale of order b to the higher mass black hole 
solution in equilibrium with thermal radiation. 

The fluctuations of the metric about the black hole solution can be divided into 
conformal equivalence classes. In each equivalence class one can pick the metric 
with constant negative scalar curvature R=4A. One can then decompose the 
fluctuations into fluctuations in the conformal factor relative to the metric with 
R = 4 A  (conformal fluctuations) and fluctuations which change the conformal 
geometry (nonconformal fluctuations) [19, 20]. As in flat space, the conformal 
fluctuations reduce the action. One therefore has to rotate the contour of 
integration for them to the imaginary axis. The nonconformal fluctuations modulo 
gauge transformations are positive definite for flat space and for anti-de Sitter 
space. However there is one and only one negative mode for a black hole in 
asymptotically flat space [21, 22]. This negative mode makes the one-loop 
determinant negative and makes the partition function of the black hole purely 
imaginary. One can interpret this in two ways. First, it implies that the canonical 
ensemble in asymptotically flat space is unstable to the formation of black holes 
with a tunneling probability given by (3.11), where B is the action of a black hole 
with that temperature [18]. Alternatively, if one uses the micro-canonical 
ensemble, one has to rotate the contour in the relation between the density of 
states and the partition function in order to obtain convergence. An imaginary 
partition function is then necessary to give a real density of states [231. 

The Schwarzschild-anti-de Sitter solution has a negative nonconformal mode 
for small values of M as in the asymptotically flat case. This mode is time 
independent, spherically symmetric, transverse and traceless [22]. It is non-zero 
on the horizon and vanishes rapidly at infinity without any nodes. As one 
increases M, a zero mode appears at the value M o that corresponds to the 
maximum of the action. This zero mode is also time independent, spherically 
symmetric, transverse and traceless and has no nodes. It must therefore be the 
negative mode passing through zero. For  M>Mo,  there will be no negative 
nonconformal modes. 

The implication of these results for the canonical ensemble is that the lower 
mass black hole at a given temperature, which has a mass M < M o, is unstable but 
contributes to the tunneling amplitude for the formation or disappearance of 
black holes. The higher mass black hole, for which M > M 0, is stable. We shall 
discuss the implications for the microcanonical ensemble in the next section. 

4. Microcanonical Ensemble 

In the microcanonical ensemble one considers all the states that are possible for a 
system with energy in the interval E to E + dE. One assumes that a system changes 
from configuration to configuration in an ergodic manner so that the probability 
of being in a particular configuration is proportional to the number of states that it 
represents. In the case of asymptotically flat space one has to imagine that the 
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system is contained in a box with unphysical walls that will reflect everything 
including gravitons. However in anti-de Sitter space the gravitational potential has 
the effect of reflecting back all particles of non-zero rest mass. Zero rest mass 
particles can escape to infinity though they get infinitely red-shifted. One can 
impose reflecting boundary conditions at spatial infinity which imply that the 
incoming and outgoing fluxes are equal [24]. It is therefore possible to consider 
the microcanonical ensemble in asymptotically anti-de Sitter space without having 
to invoke unphysical boxes. 

One is interested in the density of states N(E). The partition function z(B ) is the 
Laplace transform of N(E), 

Z(fl) = 7 N(E) e-~dE. (4.1) 
o 

Thus N(E) is the inverse Laplace transform 

1 +ioo 

N(E) = ~ -!oo Z(fl)eP~dfl" (4.2) 

The contour of integration is taken parallel to the imaginary fl axis and to the right 
of any singularities in Z(fl). Provided that Z(fl) grows less rapidly than exponen- 
tially in fl for large fl, this ensures that N(E) = 0 if E < 0. The positive mass theorem 
for anti-de Sitter space [13, 14] indicates that there should not be any states for 
negative energies. 

Pure thermal radiation will give a contribution to Z of the order of 

) Z ~ e x p  -~gb3fi -3 for f l > f l 2 = T 2  1 (4.3) 

If fl < f12 pure thermal radiation would collapse. The integral for N(E) in Eq. (4.2) 
will have a saddle point at 

/zc4 \1/4 
fl,,~ {~dgb3E - ' )  . (4.4) 

2zc4 3 
The second derivative of the logarithm of the integrand in (4.2) is ~ 9b fl- 5. Thus 

the path of steepest descent is parallel to the imaginary axis. This means that N(E) 
is real and is given approximately by 

N(E) ~ oxp I ~  (9~--~O ) I/'~E3/'] . (4.5) 

This equation will hold for E < E 2 ~ m2pb which corresponds to the saddle point at 
fl =f12. 

The Euclidean action of a black hole of period fl is 

I± ~mpb 2(fl~-fl2)(fl°± ~ )  (4.6) 
flofl~ 
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The + sign corresponds to the higher mass solution and the - sign to the lower 
mass solution. They will thus make a contribution of order e - i  + or e-I_ to Z(fl). 
The one-loop term about the black hole metrics will contribute a factor of order 

one or z exp respectively. The factor of i arises in the lower mass case 

from the negative nonconformal mode. In the higher mass case, if E > M 0, the 
stationary phase point in Eq. (4.2) will be at 

where r+ is the solution of 

4~b2r+ 
fl ~ b2 + 3r2+, (4.7) 

=~  p r ~ _ l + b 2  }. (4.8) 

The second derivative of the logarithm of the integrand is TZdM/OT>O. Thus the 
path of steepest descent will be parallel to the imaginary axis and N(E) will be real 
and given by 

N( E) ~ exp(~m2r2+ ) 

~exp[~(2mvb2E) 2/3] for g>>Mo=3-3/22m2b. (4.9) 

In the lower mass case the stationary phase point will be also given by (4.7) and 
(4.8) if g>>go,,,(gm~b3) 1/5 so that thermal radiation makes a negligible contri- 
bution. If g 0 < g ~ M o, the stationary phase point will be at the larger root of 

m~fi ~r 4 E = M + Era d ~, ~x  + ~ gb3fi- 4 (4.10) 

where a black hole of energy M is in equilibrium with thermal radiation of energy 

E r a d .  

The second derivative of the logarithm of the integrand of (4.2) will be negative 
at each of these saddle points. Thus the path of steepest decent will be parallel to 
the real axis. This will introduce a factor of i which will cancel the factor of i arising 
from the negative nonconformal mode. Thus N(E) will be real and will be given by 

4~/gb3\  1/4 1 
_ _  314 N(E),.~exp 4nm;ZM2+ 3 /~3~0 - )  grad], (4.tl) 

where M and Era d are the two terms of (4.10) that add up to E. If E < E 0, Eq. (4.10) 
has no solution for a black hole in equilibrium with radiation, so one obtains only 
the contribution (4.5) of pure thermal radiation. 

We can now estimate the probable configurations for the microcanonical 
ensemble in different ranges of the energy E. If 

- -21  --1 4 8 3 1/5 g < E o ~ ( 2  3 5 gm;b ) , (4.t2) 

the only locally stable configuration is thermal radiation without a black hole. If 

E 0 < g  < g  1 ~ 1.314E 0 , (4.13) 
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there is also a locally stable configuration with a low mass black hole in 
equilibrium with thermal radiation. However the pure radiation state is more 
probable so that although black holes may form from time to time as a result of 
fluctuations, they will tend to evaporate away by further fluctuations. If 

EI <E <Ez~mZb, (4.14) 

the pure radiation and the black hole states will be locally stable but the black hole 
state will be more probable. Finally, if E 2 <2 E, the only locally stable state will 
contain a black hole because thermal radiation will collapse. These results are very 
similar to those for the microcanonical ensemble in a box of volume 82b3 in 
asymptotically flat space [17, 25, 7, 26]. 
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