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A previous construction of unitary representations of the Virasoro algebra is extended and interpreted physically in
terms of a coset space quark model. The quaternionic projective spaces HP" ! yield the complete range of possible values
for the central charge when it is less than unity, namely 1 — 6/(n +1)(n + 2). The supersymmetric extension is also found.

There has been much interest recently in the role
conformal symmetry plays in physical theories, par-
ticularly in two dimensions when the conformal alge-
bra is infinite dimensional and comprises two commut-

ing Virasoro algebras L,,, L, each having the relations
(L, Lyl=(m—n)L, .+ c[%(m3 - m)]Bm,ﬂn ,

(1)
where m and n are integers and ¢, the central charge
of the algebra, is real.

A surprising, yet fruitful, application of this alge-
bra has been in the study of two-dimensional lattice
systems [1]. At the critical temperature these systems
become scale invariant, and hence by locality conform-
ally invariant. Friedan, Qiu and Shenker (FQS) [2]
showed that if the system possesses the “reflection
positivity” property then it must furnish a represen-
tation of (1) in a positive definite Hilbert space with
the unitarity property

Ly=L_,, ()

and in which the scale generator L + Ly has a spec-
trum which is bounded below.

It then follows that the state space of the theory
decomposes into invariant subspaces with respect to
(1), each such subspace possessing a unique highest
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weight state |4 such that

Loly=hlh), Lylh)=0 (m>0). 3)

The numbers i + ﬁ, being the eigenvalues of the scale
generator, are the possible critical exponents of the
model, and are thus determined by the representation
theory of (1).

Given a vector satisfying (3), the corresponding
invariant subspace is simply the space built up from
it by applying products of L _,,, (m > 0). The inner
product of any two vectors can be calculated from
(1), (2) and (3) and it remains to be checked that the
Hilbeit space so defined is positive definite. FQS
showed that this is the case if ¢ 2 1 and 4 = 0, and
that the only other values of ¢ and # for which this is
possible are given by:

c=1-6/(m+1)(m+2)
h=hy, ()

_[(m+2)p - (m+ 1)g]* - 1
T AmrDhmEy

(m=1), 4

(1<p<m, 1<q<p). 5)

They related these representations form =2,3,4
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and 5 to the Ising, tricritical Ising, three-state Potts
and tricritical three-state Potts models respectively,
by comparing the values of  given by (5) with the
known critical exponents of these models.

In a previous paper by two of the present authors
[3] explicit representations of the algebra (1) with
the values for ¢, & given by m = 3, 4 (as well as m = 2)
in (4) and (5) were presented. This letter follows the
previous paper in relying on the mathematical frame-
work of Kac—Moody algebras and the techniques of
the operator formalism of dual string theory. We re-
view these briefly, and refer to ref. [3] and references
therein for more details.

Suppose that g is the Lie algebra of a compact Lie
group, and hence possesses an orthonormal basis in
which the structure constants f/k are totally anti-
symmetric. The affine Kac—Moody algebra g associ-
ated with g has generators 7, (1 <i<dim G, n € Z)
and commutator
(T, 7L =ifTkTk , + kmsYs

m+n

m—n > (6)

where the central element & is real and a positive in-
tegral multiple of 32 in a highest weight representa-
tion. (Y is the highest root of g.)

A representation of the Virasoro algebra (1) can be
obtained from one of g as follows. Define the operator

=5 208 Tun T 2. ™)
where

eriri, °=1", 7L  (n>0).

One can calculate

(L5, Th1 = =65 T, . ®)

where the constant 38 is given by

BE=k+3c§ . )
Here c‘% is the adjoint representation Casimir operator
dim g

k’lel Fiklpikl et e (10)

It follows from (8) that if one rescales
£8 = (1/85IE, (11)
then .,C,%z satisfies the Virasoro algebra (1) with
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c=kd8 /g% =2kd5 [(c§ +2k), (12)

where dfi is dim g. This much is familiar.

Now let h be a subalgebra of g, and choose a basis
of generators of g such that the first dim h constitute
a basis for the generators of h. Then define

dim h

=3 2 ST Tln (13)
The preceding argument of eqgs. (8)—(12) can be re-
peated replacing g by h and taking all indices i, /, k, !
to run between 1 and dim h.

From (8), (11) and their equivalents for h it follows
that

g h i1 = . .
(£, — Ly TH1=0  (1<j<dimh), (14)
and hence that
[~ Lo Ln] =0,
(L5 = Lo L8 — Lh1 = (L5, L8] — LLh £31. (19)

m

h . . .
As .,C,gn, L, each satisfy the Virasoro algebra (1), this
shows that so does the difference:

K,=£8—ch, (16)
with
¢ =2kd§ (c§ +2k) - 2kd}) |(ch +2k). (17)

where cg is the adjoint representation Casimir opera-
tor of h.
dim h
ikl cjkl _ h ij
klz;l feLpikL = ch gl (18)

Note that ¢ given by (17) must be non-negative. If h
is not simple, but has two simple factors h; and h;
(so that h=h, @ h,) eq. (17) is modified to

¢ =2kdf [(c§ +2Kk)
2kd )M+ 2h) — 2kd"2 ) + 2k
- v /(Cw +2k) -2 v /(C\p +2k). (19)

One further point: if the representation of the T,’;z is
on a positive definite Hilbert space, with the unitarity

property
(T =1L, .
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then the representations (11) and (16) of (1) will have
the unitarity property (2) which we require.
This is relevant to the quaternionic projective space
Sp(»)

HP" L = S D X Sp(D) (20)

When g = sp(n)
c§ =yin+1). 21

Hence, if 2k/? takes its smallest possible non-trivial
value, namely unity, the central charge (12) for the
g = sp(n) Virasoro algebra takes the value

c=nCr+)/(n+2)=2n-3 - 6/(n+2). (22)

Thus taking g = sp(n), hy =sp(n — 1) and h, = sp(1)
the central charge (19) for the construction (20)
yields

c=1-6/n+t)n+2), (23)

since in the embedding implied by (20) all these sym-
plectic groups have highest roots of the same length.
The sequence (23) coincides precisely with the se-
quence (4) of possible values obtained by FQS. The
final step needed to make the construction of the cor-
responding unitary representations of (1) and (2) con-
crete is to observe that the Sp(n) affine Kac—Moody
algebra (6) with 2&/y2 equal to unity is realised by
the quark model construction of ref. [3], in which the
T, are bilinear in Fermi fields (of either Ramond or
Neveu--Schwarz type) assigned to the defining repre-
sentation of Sp(n). This representation is complex
(pseudo-real), has 2 dimensions and «, = 3¢2 in the
notation of ref. [3]. Thus we have constructed a uni-
tary representation of the Virasoro algebra (1) which
is quadrilinear in fermion fields, with central charge
occurring in the sequence (23).

In (20), we have embodied the quotient G/H of the
groups G, H corresponding to our specific choice of g
and h. This is because we suspect that our construction
(16) can be understood geometrically in terms of the
light-cone components of a two-dimensional quark
model in which the quarks are assigned to a represen-
tation of G but are differentiated with respect to an
H-covariant derivative. Since there is no H gauge field
kinetic energy, the H gauge field equations of motion
simply nullify the h quark currents, leaving the g — h
ones. We intend to study this idea further, together
with its possible relation to sigma models.
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There is an interesting alternative formulation of
the construction (20) leading to the sequence (23).
The key to the relationship is a generalisation of ideas
described in ref. [3]. In the first instance, the “quark
model” construction of the affine Kac—Moody alge-
bras g depended upon assigning the “quarks” or Fermi
fields to a real representation of g. If we wish to con-
sider a complex representation D we must use D @ D*.
Then it is possible to construct a u(1) current, commut
ing with g, from the same quarks. If D is peudoreal (i.e.
equivalent to its complex conjugate D* but not real)
it has a quaternionic nature, and it is possible to con-
struct a triplet of su(2) currents commuting with the
g currents as we now see.

As D is unitary and pseudoreal,

D'D=1, D*=eDe"!, dete+#0. (24)

»

Then €T = t ¢, but since D is not equivalent to a real
representation, e = —e! and hence it and D are of even
dimension d,. We can take

6:11/2d)\®i02 s (25)

where 1; is the d X d unit matrix and ¢; Pauli ma-
trices. We expand

N\
where @ is a ((1/2d,)/2) X (1/2d,)/2) matrix, g
=1, andg; = io; (j =1, 2, 3) are quaternions. Then
pseudoreality implies that the matrices a_, are real.
Thus D is “quaternionic”.

The representation D @ D* needed for the Kac—
Moody construction is found by considering a four-
dimensional real representation of the g, in which
they occur as the spinor generators of one su(2) half
of an su(2) = su(2) @ su(2) algebra. The generators of
the other su(2) furnish the means of constructing the
su(2) currents out of the same quarks. We can con-
struct an su(2) Virasoro algebra from the representa-
tion of su(2) formed from 1/2d, copies of the real
four-dimensional spin 1/2 representation (which we
denote by 1/2d,* [1/2]) these provide. Since the
quarks lie in this representation, the ¢ number is

3/2d, /(1/2dy +2) = 3d, /(dy + 4) . 27

An illustration is given by taking D equal to the
defining, 2n-dimensional representation of sp(n).
Then we have
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506N = psp) 4 psu(2)y , (28)

where a stands for n+[1/2], as the ¢ numbers add up
across the equation. Hence the energy—momentum
tensor constructed out of sp(r) X su(2) quark cur-
rents with quarks in the defining representation of
sp(n), equals that of 4n free massless real quarks. This
generalizes the corresponding results for so(n) and
u(n) noted in ref. [3]. Thus analogous results hold for
all classical simple Lie algebras.

As

[so(4n) =£so(4n~4) + [so(4) i (29)

we have by (28)
r£spiy _ pspn—1) _ psp(l)

_ £su(2)a + £SU(2)b - £5U(2)c , (30)

where a = n-+[1/2] again, b=(n —1)-[1/2] and ¢ =
[1/2]. The left-hand side is the construction (19),
(20) leading to (23), and the right-hand side corre-
sponds to our construction applied to:

SUQ2), X SU(2),/SU(2), . (31)

where the suffices denote the assignment of quark
representations.

The left-hand side of (30) provides the nicer geo-
metric picture: we have already mentioned the role it
may play in field theories. However, the right-hand
side may be more immediately relevant to physics,
for the following two reasons, Firstly, because this
description involves only spin 1/2 representations of
SU(2), we suspect it may be more directly related to
spin variables of the corresponding lattice models in
statistical physics. Secondly, it is the right-hand side
which can be extended to produce all the analogous
unitary representations of the supersymmetric exten-
sion of the Virasoro algebra, as we explain below.

The original supersymmetry algebra [4] was an ex-
tension of (1) in the context of the fermion string
model. It is defined by (1) together with:

[Ln’ Gr] = (%n - r)Gn+r 3 (32)
(G,, Gl = 2L, 45+ 5¢(r? = 3)6, _s . (33)

where r, s € Z (Ramond case) or r, s € Z + } (Neveu—
Schwarz case). Highest weight states satisfy
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G,Im=0 (r>0), (34)

as well as (3). FQS considered this extended algebra
too, and showed that unitary representations either
have ¢ >3 or have

c=3[1-8mm+2) (m=2), (35)
[(m+2)p — mq]® -4

8m(m + 2) te

h= hp,q(c) =

»

(I<p<m, I<gs<m+2), (36)

where ¢ is 0 and p — ¢ even in the Neveu—Schwarz
case, while ¢ is 7g and p — g odd in the Ramond case.

The series (35) of central charges for the unex-
tended algebra (1) can in fact be produced in different
ways by natural generalizations of each side of (30).
From the left-hand side, the algebra

L£sp0m) _ pspim=2) _ psp(2) (37)

with all Lie algebras in their defining representations,
produces the series (35). (This was pointed out to us
by E. Corrigan and D. Fairlie.) However, we have
found no way of constructing the extra generators
G, in this case. Indeed, such generators cannot be de-
fined on the entire Ramond or Neveu—Schwarz Fock
spaces, since highest weight vectors defined by (36)
occur in each, but without respecting the classification
given below (36). It is possible, though, that super-
symmetry generators might exist on components of
these spaces irreducible under the algebra (1).

From the right-hand side, the algebra

£Su(2)b + £su(2)c _ £Su(2)a , (38)

where aisn-[1/2] + [1],bisn-[1/2] and c is [1],
also produces the series (35). In this example, the
highest weight states do obey the classification given
with (36). Indeed they must, as we have constructed
generators G, which obey the relations (32), (33)
with L,, given by (37). These are trilinear in the fer-
mion fields, and constructed from tensors invariant
under su(2),. In the notation of ref. [3], if su(2), and
su(2), are represented by the matrices (M’)uﬁ and
(M’)jk respectively (where i,7, k run from 1 to 3; @, §
from 1 to 4n), then the corresponding Kac—Moody
generators are given by
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Tj() = 5iML,  H* @) HO @)
Tiz) = §iMy - H (k) HE (). (39)

The supersymmetry generators G, are the Laurent
coefficients of

G(z) = [4/(n + 2)(n + 4)]/?
X [H'@)Thz): —kn H'@TN2):] . (40)

For further details, we refer to ref. [5].

We think it is remarkable that there exist such sim-
ple unified yet concrete constructions of the Virasoro
and super-Virasoro algebra representations correspond-
ing to the discrete spectrum of central charges. We
conclude by listing several areas for further research.
Although we have not verified that states correspond-
ing to all the highest weights (5) and (36) occur with-
in our representations, we believe this to be the case.
The structures of these representations, and their
relationship to the physical models whose critical ex-
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ponents they predict, must be investigated. Clearly,
it would also be very interesting to develop the con-
nection between the fermionic and bosonic two-
dimensional coset space models.

Adrian Kent is grateful to the UK Science and En-
gineering Research Council for a studentship.
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