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The asymptotic dynamics of three-dimensional Einstein
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Abstract. Liouville theory is shown to describe the asymptotic dynamics of three-dimensional
Einstein gravity with a negative cosmological constant. This is because (i) Chern–Simons theory
with a gauge groupSL(2, R)×SL(2, R) on a spacetime with a cylindrical boundary is equivalent
to the non-chiralSL(2, R) WZW model; and (ii) the anti-de Sitter boundary conditions implement
the constraints that reduce theWZW model to the Liouville theory.

PACS number: 0460K

1. Introduction

Three-dimensional gravity theories have attracted considerable attention in the past fifteen
years in the hope of getting a better understanding of the intricacies of their four-dimensional
parents (see [1–3] for a recent review with an extensive list of references). In particular,
the asymptotic structure of3D gravity and 3D supergravity has been investigated [4–6],
with the following conclusions. In the case of a vanishing cosmological constant, the
asymptotic behaviour of the gravitational field is quite constrained and does not allow one
to define naturally translations and supersymmetries at spatial infinity. (This property has
been used recently to explain how one could break supersymmetry without generating a
cosmological constant [7].) By contrast, the asymptotic structure of3D gravity with a
negative cosmological constant3 < 0, is much richer§.

Indeed, in that case the asymptotic symmetry group turns out to be the group of
conformal transformations in two dimensions, generated by the infinite-dimensional Virasoro
algebra. The appearance of this conformal symmetry can be understood either in terms of
the Penrose description of infinity by means of a conformal compactification, where infinity
appears as a timelike cylinder (3 < 0) and the asymptotic symmetry group is the group
of its conformal symmetries [8]; or in terms of the Hamiltonian formulation where the
canonical generators of the transformations preserving the boundary conditions are shown
to close according to the conformal algebra [6].

The presence of the infinite-dimensional conformal group as asymptotic symmetry group
suggests strongly that the asymptotic dynamics of the gravitational field in three dimensions,
with a negative cosmological constant, is described by a two-dimensional conformal field

§ The assumption made in footnote 11 of [4] that the contraction from3 < 0 to 3 = 0 can be done smoothly is
thus incorrect.
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theory. The purpose of this paper is to show that the conformal field theory in question is
the Liouville theory†.

Our starting point is the crucial observation made in [11, 12] that three-dimensional
Einstein gravity with3 < 0 can be reformulated as a Chern–Simons gauge theory with
gauge groupSL(2, R) × SL(2, R) and action

SE[A, Ã] = SCS[A] − SCS[Ã] . (1)

HereA (respectivelyÃ) is the gauge field associated with the first (respectively the second)
SL(2, R) factor andSCS is the Chern–Simons action which in polar coordinatest, r, ϕ takes
the form

SCS =
∫

dt dr dϕ tr(ȦrAϕ − ȦϕAr − A0Frϕ) . (2)

The connectionsA andÃ are related to the triade and spin connectionω throughA = e+ω,
Ã = e − ω.

The surface at spatial infinity (r = ∞) of anti-de-Sitter space is a timelike cylinder with
coordinatest, ϕ. We denote it by62. The boundary conditions on the metric given in [6]
read, when translated in terms of the connectionA andÃ,

A ∼


dr

2r
O(1/r)

r dx+ −dr

2r

 , Ã ∼

 −dr

2r
r dx−

O(1/r)
dr

2r

 (3)

(to leading order). Here,x± = t ± ϕ. The boundary conditions express that the metric
approaches asymptotically the anti-de Sitter space and are, in particular, such that the triad
e is non-degenerate.

Two things should be emphasized about (3). (i) The lightlike componentsA− of A

and Ã+ of Ã are set equal to zero asymptotically. (ii)A
(−)
+ and Ã

(+)
− are not functions of

the variablest and ϕ to leading order inr. At the same time,A(3)
+ and Ã

(3)
− are set to

vanish. Here, the indices in parentheses are Lie algebra indices. We shall examine, in turn,
the respective implications of (i) and (ii). We start by showing that (i) reduces the Chern–
Simons theory to theSL(2, R) non-chiral Wess–Zumino–Witten model. To that end, we
closely follow the work of [13], adapted to the boundary conditions at hand. In section 3 we
show then that the implication of (ii) is to reduce thisWZW model to the Liouville model.

2. From the Einstein action to the non-chiralSL(2, R) Wess–Zumino–Witten model

The action (1) is not an extremum on-shell whenÃ− and Ã+ are required to vanish on
the boundary. Rather,δS is then equal to the surface termδ[

∫
62

dt dϕ tr(A2
ϕ + Ã2

ϕ)] on the
surface62 at infinity. (We shall examine the terms that arise att1 and t2 when discussing
(ii).) In order to haveδS = 0, one must therefore add to the action the surface term
−[

∫
62

dt dϕ tr(A2
ϕ + Ã2

ϕ)], leading to the improved action

S[A, Ã] = SCS[A] −
∫

62

dt dϕ tr(A2
ϕ) − SCS[Ã] −

∫
62

dt dϕ tr(Ã2
ϕ). (4)

The temporal componentA0 and Ã0 of the vector potential appears as a Lagrange
multiplier implementing the constraintsFrϕ = F̃rϕ = 0. One can solve these constraints as

Ai = G−1
1 ∂iG1, Ãi = G−1

2 ∂iG2 (5)

† That there is a connection between three-dimensional gravity and Liouville theory is of course not new and has
been discussed from a different perspective in [9, 10].
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whereG1 andG2 are given asymptotically by

G1 ∼ g1(t, ϕ)


√

r 0

0
1√
r

 , G2 ∼ g2(t, ϕ)

 1√
r

0

0
√

r

 (6)

and whereg1(t, ϕ) andg2(t, ϕ) are arbitrary elements ofSL(2, R). With equation (6), the
asymptotic behaviour of the radial components ofA and Ã coincide with the one of (3),
while the tangential components behave as

Aα ∼

 a(3)
α

a(+)
α

r

a(−)
α r −a(3)

α

 , Ãα ∼

 ã(3)
α ã(+)

α r

ã(−)
α

r
−ã(3)

α

 (7)

whereaα = g−1
1 ∂αg1 and ãα = g−1

2 ∂αg2. The group elementsg1(t, ϕ) andg2(t, ϕ) will be
restricted below so thatAα andÃα fulfil the remaining boundary conditions (ii).

Strictly speaking (5) is valid only if the spatial sections have no hole. In general,
one should allow for holonomies, which appear as additional ‘zero-mode terms’ in (5).
Such additional terms are necessary to describe black holes in three dimensions which
can be obtained from anti-de Sitter space by making appropriate identifications [14, 15].
Furthermore, there are then also additional inner boundaries with their own surface
dynamics. The dynamics on a black hole horizon, has been treated in [16]. Since here we
are only interested in the asymptotic dynamics of the gravitational field, we shall, however,
drop the holonomies and ignore the inner surfaces. A full treatment will be given in [17].

Now, if one inserts (6) in the action (5), one gets

S[A, Ã] = SR
WZW[g1] − SL

WZW[g2] (8)

whereSR
WZW[g1] andSL

WZW[g2] are the two-dimensional chiral Wess–Zumino–Witten (WZW)
actions [13, 18–21]. These first-order actions generalize the Abelian actions of [22] and
describe a right-moving group elementg1(x

+) and a left-moving group elementg2(x−),
respectively,

SR
WZW[g1] =

∫
62

dt dϕ tr(ġ1g
′
1 − (g′

1)
2) + 0[g1] (9)

SL
WZW[g2] =

∫
62

dt dϕ tr(ġ2g
′
2 + (g′

2)
2) + 0[g2] (10)

whereġ = g−1 ∂
∂t

g, g′ = g−1 ∂
∂ϕ

g and0[g] is the usual three-dimensional part of theWZW

action. As shown in [18–20], the actions (9) and (10) each lead to a single chiral Kac–
Moody symmetry (of opposite chirality). One expects the sum (8) of the left and right
chiral actions (9), (10) to be equivalent to the standard, non-chiral,WZW action [23] with
dynamical variableg = g−1

1 g2 since in that model the right-moving and left-moving sectors
are indeed decoupled [23, 24]. This expectation turns out to be true.

One way to establish the equivalence is to rewrite the standardWZW action in
Hamiltonian form, since (9) and (10) are linear and of first order in the time derivatives.
We denote by5g the momentum conjugate tog and byu the function ofg and5g which
is equal toġ when the equations of motion hold. One may takeg and u as independent
variables. The change of variables

g = g−1
1 g2, u ≡ ġ|on-shell = −g−1

2

∂

∂ϕ
g1g

−1
1 g2 − g−1

2

∂

∂ϕ
g2 (11)
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brings (8) to the standardWZW action in first-order form or, after elimination of the auxiliary
field u, to the standard, non-chiralSL(2, R) WZW action in second-order form,

S[A, Ã] = SWZW[g], SWZW[g] =
∫

σ2

dt dϕ (tr(g+g−) − 0[g]) (12)

whereg± ≡ g−1 ∂
∂x± g. We omit the details here, leaving them for the complete treatment

[17] where, in particular, the zero modes and holonomies will also be included. We simply
note that the transformation (11) is the direct generalization of the transformation analysed
in [18, 25] in theU(1) case, which establishes the equivalence of the sum of left-moving
chiral boson and a right-moving chiral boson to a massless Klein–Gordon field.

Thus, so far we have shown that the asymptotic dynamics of the gravitational field in
three dimensions with3 < 0 is described by the (non-chiral)SL(2, R) WZW action. We
have not yet, however, incorporated all the boundary conditions on the connection. This
missing step is taken now.

3. From the WZW model to Liouville theory

The conditions that we have not taken into account at this stage are the conditions (ii) which
read, in terms of the group elementg

J
(+)
− ≡ (g−1∂−g)(+) = 1, J̃

(−)
+ ≡ (∂+gg−1)(−) = 1 (13)

andJ
(3)
+ = 0, J

(3)
− = 0. Since theJ ’s are just the Kac–Moody currents of theWZW model,

we recognise (13) as the conditions implementing the familiar Hamiltonian reduction of
the WZW model to the Liouville theory. The conditionsJ (3)

+ = J
(3)
− = 0 appear as ‘gauge

condition’. This reduction has been discussed at length in the literature so that we do not
need to recall the details here.

Let us simply point out the perhaps less familiar fact that the reduction can be carried
out directly at the level of the action. As shown in [26], theWZW action reads, if one
parametrizesg according to the Gauss decomposition

g =
[

1 X

0 1

] [
exp( 1

2φ) 0

0 exp(− 1
2φ)

] [
1 0

Y 1

]
, (14)

SWZW[g] =
∫

dt dϕ( 1
2∂+φ∂−φ + 2(∂−X)(∂+Y ) exp(−φ)) . (15)

Now the action (12) is defined on the cylinder [t1, t2] × S1 of finite heightt2 − t1 and
is stationary on the classical history provided one fixesφ, X and Y at the time boundary
t1 and t2. However, since we want to implement the constraints (13), it is notφ, X and
Y that we want to fix at the boundaries, but rather,φ and the momentum∂−Y and ∂+X

conjugate toX and Y , sinceJ
(+)
+ = ∂−X exp(−φ) and J̃

(−)
− = ∂+Y exp(−φ). Hence the

constraints (13) cannot be simply plugged into (15). The action appropriate to the new set
of boundary conditions differs from (15) by a boundary term att1 and t2,

SWZW
impr [g] = SWZW[g] − 2

∮
dϕ(X∂+Y + Y∂−X) exp(−φ)|t2t1 . (16)

With the ‘improved’ term, it is legitimate to insert the constraints (13) in the action (16).
If one does so, one ends up with the Liouville action forφ

S[A, Ã] = SLiouville [φ] =
∫

dt dϕ
(

1
2∂+φ∂−φ + 2 exp(φ)

)
. (17)
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Hence, we have established that the asymptotic dynamics of the gravitational field in
three dimensions, with3 < 0, is indeed described by the Liouville theory. As is well known,
this theory is conformally invariant and possesses two sets of Virasoro generatorsLn and
L̃n. These can be viewed as generating the residual Kac–Moody symmetries preserving the
constraints and are the asymptotic generators found by a totally different approach in [6].
(See also [27, 28] for a related analysis of the surface terms in the Chern–Simons theories.)

Remark. one can actually substitute the constraintsJ
(+)
+ = µ and J̃

(−)
− = ν in the action

(16), provided one observes that the constantsµ and ν are functionals of the fields and
varies them accordingly in the action principle. A very similar situation occurs when one
treats the cosmological constant as a dynamical variable. The subtleties of the variational
principle are explained in that case in [29].

4. Conclusions

In this paper, we have completed the analysis of the asymptotic dynamics of3D Einstein
gravity with a negative cosmological constant. We have shown that the Virasoro symmetry
generators found in [6] arise because the asymptotic dynamics is described by a conformally
invariant theory, namely the Liouville theory.

The asymptotic reduction of the Einstein action—equivalent toSL(2, R) × SL(2, R)

Chern–Simons action—to the Liouville action follows a two-step procedure. First, one
imposes conditions of opposite chiralities on eachSL(2, R) factor, namelyA− = 0 and
Ã+ = 0. This leads to the sum of two chiralSL(2, R) WZW actions of opposite chiralities or,
what is the same, to the non chiralSL(2, R) WZW action. Next one imposes the constraints
on the Kac–Moody currents that reduce theSL(2, R) WZW action to the Liouville theory.
The two steps are precisely incorporated in the boundary conditions on the triads and
connection expressing asymptotic approach to the anti-de Sitter space, and thus, they have
a direct geometrical interpretation. Our analysis also exemplifies very clearly how the
asymptotic dynamics is sensitive to the boundary conditions.

A further account of this work, with extension to supersymmetry (important for proving
positivity of the energy theorems) will be reported elsewhere.
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