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What we don’t know about BTZ black hole entropy

S Carlip†
Department of Physics, University of California, Davis, CA 95616, USA

Received 16 June 1998

Abstract. With the recent discovery that many aspects of black hole thermodynamics can
be effectively reduced to problems in three spacetime dimensions, it has become increasingly
important to understand the ‘statistical mechanics’ of the (2+ 1)-dimensional black hole of
Bañados, Teitelboim, and Zanelli (BTZ). Several conformal field theoretic derivations of the BTZ
entropy exist, but none is completely satisfactory, and many questions remain open: there is no
consensus as to what fields provide the relevant degrees of freedom or where these excitations
live. In this paper, I review some of the unresolved problems and suggest avenues for their
solution.

PACS numbers: 0470D, 0460K

1. Introduction

Since its discovery in 1992, the (2+ 1)-dimensional black hole of Bañados, Teitelboim and
Zanelli [1, 2] has served as a useful model for realistic black hole physics [3]. Interest
in this model has recently been heightened with the discovery that the thermodynamics
of higher-dimensional black holes can often be understood in terms of the BTZ solution.
Many of the black holes relevant to string theory have near-horizon geometries of the form
BTZ×M, whereM is a simple manifold, and their entropies and grey-body factors can
be obtained from the BTZ black hole directly [4–19] or by duality [20–22]. It has become
vital to understand BTZ black hole thermodynamics from first principles.

A natural guess is that black hole entropy should be associated with horizon degrees
of freedom. In 2+ 1 dimensions, the horizon is two-dimensional, suggesting the relevance
of conformal field theory. This connection is strengthened by the observation that (2+ 1)-
dimensional gravity can be written as a Chern–Simons theory [23, 24], and that Chern–
Simons theories induce Wess–Zumino–Witten models on boundaries [25, 26].

The first application of conformal field theory techniques to BTZ black hole entropy
appeared in [27], with the treatment of boundary conditions later simplified in [28]. This
approach explicitly counts states, but relies on a poorly understood nonunitary theory and a
complicated treatment of boundary data. It was recently shown that the same technique gives
the correct entropy for (2+ 1)-dimensional de Sitter space [29]. A simpler computation,
based on the Euclidean partition function, was developed in [30]. Like most partition
function methods, however, this approach does not explicitly display the states being
counted, and it involves an analytic continuation from Lorentzian to Riemannian metrics
that is not completely understood. A rather different Euclidean partition function approach
appeared in [31].

† E-mail address: carlip@dirac.ucdavis.edu

0264-9381/98/113609+17$19.50c© 1998 IOP Publishing Ltd 3609



3610 S Carlip

Recently, Strominger has suggested a much simpler derivation of the BTZ black hole
entropy [4]. He begins with the observation, known since 1986 [32], that the asymptotic
symmetry group of (2+ 1)-dimensional gravity with a negative cosmological constant
3 = −1/`2 is generated by two copies of the Virasoro algebra, with central charges

cL = cR = 3`

2G
. (1.1)

The degrees of freedom, now at infinity rather than the horizon, are thus described by a
conformal field theory with this central charge. The asymptotic density of states for such a
theory follows from a result of Cardy’s [33, 34]: it is

ln ρ(1, 1̄) ∼ 2π

√
cR1

6
+ 2π

√
cL1̄

6
, (1.2)

where1 and1̄ are the eigenvalues of the two Virasoro generatorsL0 and L̄0. But for the
BTZ black hole, we have (up to an ambiguous additive constant) [35]

M = (L0+ L̄0)/`, J = L0− L̄0, (1.3)

wherer± are the radii of the inner and outer horizons. Substituting into (1.2) and using the
expression (A.4) for the mass and angular momentum, we obtain the correct entropy

S = 2πr+
4G

. (1.4)

Attractive as this approach is, it is not yet the full answer. The Cardy formula (1.2) is
derived from the partition function, and like the Euclidean approach of [30], it hides the
actual degrees of freedom that contribute to the entropy. Moreover, as we shall see below,
equation (1.2) involves some hidden assumptions that may not hold for the BTZ black hole.
Strominger’s derivation also raises the question of where the relevant degrees of freedom
are located: other approaches describe excitations at the horizon, but the central charges
(1.1) are relevant for a conformal field theory at infinity.

In this paper, I will discuss these issues, describing some of the assumptions and
ambiguities in various approaches and suggesting a few paths forward. While I have tried to
make this paper reasonably self-contained, I assume some familiarity with the BTZ solution
(see [3] for a review). Appendix A describes some coordinate systems and conventions,
and appendix B discusses issues related to the choice of boundary conditions in [27].

It is perhaps worth emphasizing that although some of the approaches described here
are inspired by string theory, my focus is on pure (2+1)-dimensional gravity. A full string
theoretical picture of the BTZ black hole presumably involves a large number of added
degrees of freedom (see, for example, [36]), and the relationship to the counting techniques
described here is not entirely clear.

2. Counting states: partition functions and Cardy’s formula

In the microcanonical ensemble, the entropy is essentially the logarithm of the density of
statesρ(E). There are two common methods for determining this quantity. The most
straightforward, which I address in section 3, is to simply count: we begin with a vacuum
state and see how many different ways we can add excitations to reach the energyE. The
second approach is less direct, but often simpler: we manipulate the partition function to
obtain a density of states. For conformal field theories, this method yields the Cardy formula
(1.2) and its generalization, equation (2.13) below.
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We begin with a conformal field theory with central chargec, with the standard Virasoro
algebra

[Lm,Ln] = (m− n)Lm+n + c

12
m(m2− 1)δm+n,0 . (2.1)

Cardy’s basic result [33, 34] is that the quantity

Z0(τ, τ̄ ) = Tr e2π i(L0− c
24)τe−2π i(L̄0− c

24)τ̄ (2.2)

is modular invariant, and in particular invariant under the transformationτ → −1/τ . This
argument involves only some quite general properties of conformal field theories, and I will
assume it holds for the theory associated with the BTZ black hole.

Now, the partition function on the torus of modulusτ is

Z(τ, τ̄ ) = Tr e2π iτL0e−2π iτ̄ L̄0 =
∑

ρ(1, 1̄)e2π i1τe−2π i1̄τ̄ . (2.3)

For a unitary theory,ρ is the number of states with eigenvaluesL0 = 1, L̄0 = 1̄, as can
be seen by inserting a complete set of states into the trace. For a nonunitary theory,ρ is
the difference between the number of positive-norm and negative-norm states, although the
definition of trace can be changed to make all states contribute positively.

We can now extractρ from Z by contour integration. Treatτ and τ̄ as independent
complex variables (this is not necessary, but it simplifies the computation), and letq = e2π iτ

and q̄ = e2π iτ̄ , so

ρ(1, 1̄) = 1

(2π i)2

∫
dq

q1+1

dq̄

q̄1̄+1
Z(q, q̄). (2.4)

For notational simplicity, I will suppress thēτ dependence, and restore it only at the end
of the computation. The basic trick is to note that

Z(τ) = e
2π ic
24 τZ0(τ ) (2.5)

and to use the modular invariance ofZ0 to rewrite the contour integral in a form suitable
for a saddle-point approximation:

Z(τ) = e
2π ic
24 τZ0(−1/τ) = e

2π ic
24 τe

2π ic
24

1
τ Z(−1/τ) (2.6)

and thus

ρ(1) =
∫

dτ e−2π i1τe
2π ic
24 τe

2π ic
24

1
τ Z(−1/τ). (2.7)

The key to a saddle-point approximation is to separate the integrand into a rapidly
varying phase and a slowly varying prefactor. Let us assume for the moment—we will
have to check this—thatZ(−1/τ) varies slowly near the extremum of the phase. For large
1, the extremum of the exponent is then

τ ≈ i
√
c/241 . (2.8)

Substituting (2.8) back into the integral, we obtain

ρ(1) ≈ exp

{
2π

√
c1

6

}
Z(i∞), (2.9)

yielding the Cardy formula (1.2).
We must now check the saddle-point approximation. From (2.3),

Z(i/ε) =
∑

ρ(1)e−2π1/ε. (2.10)
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If the lowest eigenvalue ofL0 is 10 = 0, thenZ(i/ε) approaches a constant asε → 0, and
the saddle-point approximation is good. But if10 6= 0, the factorZ(−1/τ) in (2.7) varies
rapidly near the putative saddle-point, and the approximation is not valid. This is easily
corrected however. Define

Z̃(τ ) =
∑

ρ(1)e2π i(1−10)τ = e−2π i10τZ(τ), (2.11)

which goes to a constant asτ → i∞. Then the integral forρ becomes

ρ(1) =
∫

dτe−2π i1τe−2π i10
1
τ e

2π ic
24 τe

2π ic
24

1
τ Z̃(−1/τ). (2.12)

For1 large, this integralcan be evaluated in a saddle-point approximation, giving

ρ(1) ≈ exp

{
2π

√
(c − 2410)1

6

}
ρ(10)

= exp

{
2π

√
ceff1

6

}
ρ(10). (2.13)

Equation (2.13) is the generalization of (1.2) to theories in which10 6= 0.
At first sight, the assumption that10 = 0 seems innocuous. But there is a well known

conformal field theory for which this assumption fails, Liouville theory. The Liouville action
contains a single (albeit interacting) scalar field, and canonical quantization gives standard
creation and annihilation operators [37]. The density of states should thus behave like that
of an ordinary scalar field: we should use equation (1.2) withc = 1. On the other hand,
the central chargecLiou in Liouville theory is determined by the coupling constants, and can
be chosen arbitrarily, so the naive Cardy formula can give an arbitrarily large density of
states. The solution, as noted by Kutasov and Seiberg [38], is that the minimum value of
L0 is not zero for normalizable states in Liouville theory. Instead [39],

10 = cLiou − 1

24
(2.14)

and thusceff = cLiou − 2410 = 1 in (2.13), as expected from canonical quantization. This
example is directly relevant to the BTZ black hole, since (2+1)-dimensional gravity induces
a Liouville theory at spatial infinity [40, 41], and the central charge (1.1) can be understood
as arising from this Liouville theory.

Another example of an ‘effective central charge’ will be useful later. Start with standard
affine Lie algebra†

[J am, J
b
n ] = if abcJ

c
m+n + kmgabδm+n,0 (2.15)

with the usual affine Sugawara construction for the Virasoro generators,

Ln = 1

2k +Q
∑
p

gab : J ap J
b
n−p : , (2.16)

which satisfy the algebra (2.1). This theory has a central chargec determined by the group,
and its asymptotic density of states is given by equation (1.2). Now consider the deformed
Virasoro algebra [42, 43] generated by

L̃n = Ln + inαaJ
a
n +

k

2
αaα

aδn0. (2.17)

† I use the metricgab = Tr TaTb to raise and lower indices; this convention leads to an occasional factor of two
difference with some expressions in the literature. In (2.16),Q is defined byfabcf abd = Qδdc .
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It is easy to check that thẽLn again satisfy the Virasoro algebra (2.1), but with a new central
charge

c̃ = c + 12kαaα
a. (2.18)

But the redefinition (2.17) has not changed the Hilbert space, so the asymptotic behaviour
of the density of states should not be affected.

Again, the answer lies in the failure of the naive Cardy formula. The shift ofL0 means
that the lowest eigenvalue of̃L0 is no longer zero, but rather

1̃0 = k

2
αaα

a. (2.19)

The effective central charge in (2.13) is thusceff = c̃ − 12kαaαa = c, and the deformation
(2.17) does not change the asymptotic density of states. Like the Liouville case, this
example is directly relevant to the BTZ black hole: in [31] and [35], the central charge
(1.1) is obtained by precisely such a shift.

It is perhaps worth emphasizing the peculiarity of equation (2.13) for models with
10 < 0. A negative value of10 implies anincreasein the asymptotic density of states: it
is as if a model with10 = −1 had 24 extra bosonic oscillators. As we shall see in section
4, the relative contributions toceff from c and10 can depend on the choice of boundary
conditions, and it is possible that the central charge in Strominger’s approach to black hole
entropy might come entirely from a large negative value of10. It would be valuable to
understand explicitly—perhaps in a simpler model—exactly what mechanism is responsible
for the contribution of10 to the density of states.

3. Counting states: combinatorics

The preceding section dealt with the indirect counting of states via the partition function. In
this section, I will discuss a more transparent counting procedure, based on the combinatorics
of creation operators. Let us begin with a standard example, a single scalar field, whose
creation and annihilation operators form an affine Lie algebra (2.15) for the groupR of real
numbers. We choose a vacuum such that

Jn|0〉 = 0 for n > 0 (3.1)

and create excited states by acting with creation operatorsJ−n. Since [L0, J−n] = nJ−n and
L0|0〉 = α0|0〉 for some constantα0,

L0
(
J−n1J−n2 . . . J−nm

) |0〉 = (α0+ n1+ n2+ . . .+ nm)|0〉. (3.2)

The number of states withL0 = 1 is thus simply the number of distinct ways the quantity
1−α0 can be written as a sum of integers. This is the famous partition functionp(1−α0)

of number theory, whose asymptotic behaviour is [44]

lnp(1− α0) ∼ 2π
√
1/6 . (3.3)

This behaviour agrees, as it should, with the Cardy formula (1.2) forc = 1.
Extensions of this result to more than one field appear frequently in the string theory

literature. However, a more general form seems not to be widely known [45]. Suppose we
start with bosonic ‘creation operators’φ(Mn)

n , with conformal dimensions

[L0, φ
(Mn)
n ] = βnφ(Mn)

n . (3.4)

Hereβ is a constant, and the indexMn distinguishes fields with identical dimensions. Let
γ (n) denote the degeneracy at conformal dimensionβn, i.e.,Mn = 1, . . . , γ (n). We allow
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γ (n) to be zero for some values ofn—the conformal dimensions need not be equally spaced.
Now, suppose that the asymptotic behaviour of the sum of degeneracies is∑

n6x
γ (n) ∼ Kxu (3.5)

for largex. Then the number of states withL0 = 1 can be shown to grow as

ln ρ(1) ∼ 1

u
[u+ 1]u/(u+1) [Ku0(u+ 2)ζ(u+ 1)]1/(u+1) [1/β]u/(u+1)

. (3.6)

For a scalar field,γ (n) = 1 and henceK = u = 1; it is then easily checked that
(3.6) reproduces (3.3). ForD fields, γ (n) = D, andK = D; the effect is equivalent to
the introduction of central chargec = D in (1.2). But equation (3.6) is considerably more
general. Consider, for example, a set of fields with conformal dimensionsj (j + 1) and
multiplicities 2j + 1, i.e.

γ (n) =
{

2j + 1 if n = j (j + 1)
0 otherwise.

(3.7)

An easy computation shows thatK = u = 1, so the asymptotic density of states is again
given by (3.3), even though the states are no longer evenly spaced. I will return to this
example in section 6.

For fermionic creation operators, no corresponding result exists in the literature, but the
generalization of (3.6) is straightforward. The key observation is that the bosonic generating
functionp(q) and the fermionic generating functioñp(q), given by

p(q) =
∞∏
n=1

(1− qn)−γ (n) =
∑

ρ(n)qn

p̃(q) =
∞∏
n=1

(1+ qn)γ (n) =
∑

ρ̃(n)qn,

(3.8)

satisfy p̃(q)−1p(q) = p(q2), or equivalently,∑
m

ρ(m)ρ̃(n− 2m) = ρ(n). (3.9)

Using this relation and equation (3.6), it is fairly easy to show that

ln ρ̃(1) ∼ 1

u
[u+ 1]u/(u+1)

[
Ku0(u+ 2)ζ(u+ 1)(1− 2−u)

]1/(u+1) [
1/β

]u/(u+1)
. (3.10)

Foru = 1, in particular, the only difference between expressions (3.10) and (3.6) is an extra
factor of 1/

√
2 in (3.10), corresponding to the well-known fact that a fermionic oscillator

contributes a factor of 1/2 to the central charge.
Unlike the partition function methods of the preceding section, the combinatoric

techniques described here explicitly display the states that contribute to the entropy.
Unfortunately, there is a price to pay: we need to start with a much more concrete description
of the vacuum and the operator content of the theory. Ultimately, however, some counting
procedure like this will be necessary to complete our understanding of black hole entropy.

4. Where do the black hole degrees of freedom live?

In typical approaches to black hole statistical mechanics, the degrees of freedom associated
with the entropy are assumed to live on or near the horizon. Strominger’s derivation, on
the other hand, is based on a central charge (1.1) that describes the asymptotic behaviour
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at spatial infinity. Yet another suggestion, due to Martinec [12], is that the central charge
is a result of ‘anomaly inflow’—the entropy comes fromD-brane dynamics at the horizon,
but the conformal anomaly is transported to spatial infinity by the coupling to bulk degrees
of freedom.

To understand this issue better, it is helpful to review the derivation of the central charge
in the Chern–Simons formulation of (2+ 1)-dimensional gravity. A careful canonical
analysis has been given by Bañados [35] and by Bãnados, Brotz and Ortiz [31] (see
also [46]), and I will not repeat it here, but will give a brief heuristic derivation of their
results.

It is well known that diffeomorphisms in a Chern–Simons theory are equivalent on shell
to field-dependent gauge transformations. Indeed, the Lie derivative of the gauge potential
(or connection 1-form)A is

LξA = d(ξ · A)+ ξ · dA = DA(ξ · A)+ ξ · F (4.1)

where DA is the exterior gauge-covariant derivative,F is the field strength, and the dot
denotes contraction of a vector with the first index of a form. The Chern–Simons field
equations tell us thatF = 0, and the remaining term in (4.1) may be recognized as a gauge
transformation with an infinitesimal parameterεa = ξµAµa.

Now consider a slice at constant time with anS1 boundary, which may be a black hole
horizon or spatial infinity. Pick a radial coordinateρ such that the boundary is located at
ρ = ρ0, and choose a gauge condition

Aρ
a = αa (4.2)

near the boundary, whereαa is a fixed element of the Lie algebra. Up to possible quantum
corrections, the generator of gauge transformations at the boundary is [35]

G[ε] = − k

2π

∫
S1
εaAφ

adφ, (4.3)

so by (4.1), the generator of diffeomorphisms is

G[ξ ] = − k

2π

∫
S1

(
1

2
ξφgabAφ

aAφ
b + ξρgabαaAφb

)
dφ. (4.4)

The factor of 1/2 in the first term reflects the fact that both copies ofAφ contribute to the
Poisson brackets: schematically,{ξφ(Aφ)2, F } ∼ 2ξφAφ{Aφ, F }. To preserve the gauge
condition (4.2), we should takeξρ andξφ to be independent ofρ.

Now, a Chern–Simons theory on a manifold with boundary induces a Wess–Zumino–
Witten model on the boundary, with an affine Lie algebra that is essentially generated by
theAφ . More precisely, if we write

Aφ
a = 1

k

∞∑
n=−∞

J an einφ, (4.5)

the currentsJ an will obey the algebra (2.15). The first term in (4.4) is thus closely related
to the Virasoro generator (2.16), and if we can restrictξρ , we have a chance of recovering
the Virasoro algebra (2.1).

In particular, Bãnados observed that if we chooseξρ = −∂φξφ , we recover an algebra
with a central charge that, up to quantum corrections, is equal to the value (1.1) found by
Brown and Henneaux. This should not be surprising in light of the model discussed at the
end of section 2. For this choice ofξρ , the generator (4.4) becomes

G[ξ ] = − k

2π

∫
S1
ξφ
(

1
2gabAφ

aAφ
b + αa∂φAφa

)
dφ, (4.6)
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which leads to precisely the shift (2.17) of the Virasoro generators. Using the results from
Appendix A thatαaαa = 1/2 andk = `/4G for the BTZ black hole, we see that the shift
in c is 3̀ /2G, in agreement with (1.1).

But it is also clear that the generators (4.4) contain many other Virasoro subalgebras [31].
If, for example, we chooseξρ = −β∂φξφ , we obtain a central chargec(β) = 3β2`/2G.
We must somehow determine which choice gives us the ‘right’ algebra; that is, we must
decide what boundary conditions to place on the diffeomorphisms.

There are a number of natural choices, which are unfortunately not all equivalent. For
example, we might fix the induced metricgφφ on the boundary, by requiring that

Lξ gφφ = 0= ξρ∂ρgφφ + 2∂ρξ
φgφφ, (4.7)

whereρ is the proper radial coordinate (A.5). A simple calculation then shows that for a
boundary at Schwarzschild coordinater = r0,

ξρ = −N(∞)
N(r0)

∂φξ
φ, (4.8)

whereN(r) is the BTZ lapse function (A.2). From equation (2.18), we thus obtain a central
charge

c̃(r0) = c +
(
N(∞)
N(r0)

)2 3`

2G
. (4.9)

The naive Cardy formula (1.2) would thus give the standard BTZ entropy (1.4) for a
boundary at infinity, but a ‘blue-shifted’ entropy proportional toN(∞)/N(r0) for a boundary
at r = r0. But this is precisely the kind of situation in which (1.2) is not to be trusted,
since the minimum eigenvalue10 of L0 is also blue-shifted. Indeed, as we saw at the
end of section 2, these shifts cancel in the effective central charge in the generalized Cardy
formula (2.13), and the actual entropy is independent ofr0. Note, though, that we can no
longer claim that this entropy is given by equation (1.4), unless we can control bothc and
10 at the boundary.

Rather than fixing the intrinsic geometrygφφ at the boundary, we might equally plausibly
fix the extrinsic curvature. For example, we could fix the radial form of York’s ‘extrinsic
time,’ 5 = √gφφgφφkφφ , wherekφφ is the extrinsic curvature of ourS1 boundary viewed
as a submanifold of a constant-time slice. Fixing5 requires that

Lξ5 = 0= ∂ρ(ξρ5)+ ∂φ(ξφ5), (4.10)

and a straightforward computation shows that

ξρ = − N(r0)

∂ρN(r0)
∂φξ

φ. (4.11)

The corresponding central charge now varies from Strominger’s value (1.1) at spatial infinity
to zero at the horizon. Once again, however, the variation of10 cancels this effect in the
computation of the entropy.

As yet another alternative, we might choose to fix the mean curvaturek = gφφkφφ at
the boundary. Sincek is a scalar, this requires that

Lξ k = 0= ξρ∂ρk, (4.12)

and thusξρ = 0. This choice is physically appealing, since the condition for an apparent
horizon on a time slice of vanishing mean curvature is thatk = 0 [47]. On the other hand,
such an apparent horizon is equally well determined by the condition that5 = 0.

We can learn three basic lessons from this analysis:
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1. At least in the Chern–Simons formulation of (2+ 1)-dimensional gravity, the central
charge of an induced conformal field theory at a boundary can depend sensitively on
the location of the boundary and the choice of boundary conditions.

2. For the counting of states, this dependence may not matter, since theeffectivecentral
charge in the generalized Cardy formula (2.13) may not change.

3. To use (2.13) to compute the entropy of the BTZ black hole, we must control not only
the central charge, but also the eigenvalue10, on some boundary.

5. Lowest Virasoro eigenvalues

We have seen that if we wish to use the Cardy formula to compute the BTZ black
hole entropy, we must know both the central charge and the lowest eigenvalue ofL0

on some boundary. Unfortunately, the general arguments of Brown and Henneaux [32] and
Bañados [35] tell us little about the eigenvalue10; for that, we need more information
about the relevant conformal field theory.

One way to obtain such information comes from supersymmetry. As Coussaert and
Henneaux have observed [48], the massless BTZ black hole is supersymmetric, and lies in
the Ramond sector of the theory (i.e. the Killing spinors are periodic). Similarly, anti-de
Sitter space—the ‘M = −1/8G’ BTZ black hole—is supersymmetric, and lies in the Neveu–
Schwarz sector (the Killing spinors are antiperiodic). Suppose the standard superconformal
algebra,

[Lm,Ln] = (m− n)Lm+n + 1
2cm(m

2− 1)δm+n,0
[Lm,Gn] = ( 1

2m− n)Gm+n
{Gm,Gn} = 2Lm+n + 1

3c(m
2− 1

4)δm+n,0,

(5.1)

applies to the boundary conformal field theory. In the Ramond sector, the generatorsGm

have integer moding, and the lowest possible eigenvalue ofL0 will be

L0|0R〉 = c

24
|0R〉. (5.2)

In the Neveu–Schwarz sector, theGm have half-integer moding, and the lowest weight is

L0|0NS〉 = 0. (5.3)

TheM = 0 black hole thus hasL0 = c/24, and anti-de Sitter space hasL0 = 0†.
If we can consider anti-de Sitter space to be part of our Hilbert space, and if the

canonical analysis of Bañados in [35] can be extended to give the superconformal algebra
(5.1), we can then argue that the lowest eigenvalue ofL0 is in fact10 = 0. If this is the
case, the generalized Cardy formula (2.13) reduces to (1.2), and Strominger’s analysis gives
the correct black hole entropy.

There is one subtlety in this argument, however. Although theM = 0 BTZ black hole
and anti-de Sitter space are certainly both supersymmetric, we do not knowa priori which
set of Virasoro generatorsLn appears in the superconformal algebra (5.1). As we saw in
section 4, the canonical algebra of boundary diffeomorphisms, at the horizon or at infinity,
contains many copies of the Virasoro algebra with different central charges, and we do not
know which of these should be associated with anti-de Sitter space.

† TheL0 values in [4] differ from these by an additive constant of−c/24. This constant was chosen to adjust
L0 to vanish for theM = 0 black hole. To use the Cardy formula for the density of states, however, we must
normalizeL0 according to the algebra (5.1).
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In particular, the deformation (2.17) of the Virasoro algebra of a WZW model can be
extended to the supersymmetric case, with the same shift in central charge. In addition to
the currentsJ an , a supersymmetric WZW model contains a set of fermionic oscillatorsψa

n

in the adjoint representation [49]. It is not hard to check that the deformation

G̃n = Gn − 2i
√
knαaψ

a
n , (5.4)

accompanied by the shift (2.17) of theLn, gives a new superconformal algebra (5.1) with
the shifted central charge (2.18). Note that in the Neveu–Schwarz sector, equation (5.4)
shifts the operatorsG±1/2, and the ambiguity can be reformulated as a question of which
of these shifted operators annihilates the anti-de Sitter vacuum.

Supersymmetric Liouville theory again offers a cautionary tale. The super-Liouville
model is a superconformal field theory, with an algebra (5.1) that can be constructed
explicitly from the fields. It is tempting to conclude that supersymmetry should force
the minimum eigenvalue ofL0 to be zero. But in fact, the stress–energy tensor of super-
Liouville theory contains an ‘improvement’ term of the form (2.17), andL0 is shifted by a
constant [51]

1̃0 = 1
24(c − 3

2), (5.5)

yielding an effective central charge ofceff = 3/2, as one would expect from counting
oscillators. As in the nonsupersymmetric version [39], the candidate for anSL(2,C)-
invarant vacuum state is not normalizable, and does not lie in the Hilbert space built from
the oscillators of the model.

Whether the same problem occurs for (2+ 1)-dimensional gravity can probably be
determined only by a careful extension of a canonical analysis like that of [35], with close
attention paid to the relationships between boundary conditions for the diffeomorphisms
and their superpartners. An important step in this direction has recently been taken
by Bãnadoset al [52], who examine the asymptotic algebra of symmetries in (2+ 1)-
dimensional supergravity and construct a superconformal algebra. I believe, however,
that their description of the symmetry algebra is not yet explicit enough to determine the
spectrum, and thus the eigenvalue1̃0 and the effective central charge.

I will end this section by pointing out a numerical coincidence that may have a deeper
meaning. The Virasoro generatorL0 of equation (2.16) involves an important zero-mode
term. ForSL(2,R), with the conventions described in Appendix A, this contribution is

L0 = 1

k − 2

(−J0
2+ J1

2+ J2
2
)+ non-zero mode contributions, (5.6)

where J0, J1, and J2 obey the standardSL(2,R) commutation relations. From the
representation theory ofSL(2,R) [50], we see that for the principal discrete series,

L0 = −j (j + 1)

k − 2
+ non-zero mode contributions, (5.7)

wherej is a negative integer or half-integer. In particular, forj = −k/2,

L0 = −k
4
+ non-zero mode contributions= −1̃0+ . . . , (5.8)

where1̃0 is the shift in the lowest eigenvalue ofL0, equation (2.19), for the BTZ black
hole. The deformation (2.17) ofL0 thus precisely cancels the zero-mode contribution of
the state withj = −k/2.

Now, if the value j = −k/2 had been chosen arbitrarily, this would not be a
very significant observation. But in anSU(2) Chern–Simons theory,j = k/2 is the
highest admissible value (the highest integrable representation), and Hwang has argued that
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j = −k/2 could play an equivalent role forSL(2,R) [53, 54]†. Similarly, in the Euclidean
partition function approach of [30],|j | = |k/2| is the maximal value appearing in the
partition function. This may be accidental, but it may indicate that the proper deformation
(2.17) of the Virasoro algebra simultaneously sets the central charge to the value (1.1) and
sets10 to zero.

6. Operators and degrees of freedom

Suppose we can show that the ‘correct’ central charge for the BTZ black hole at some
boundary is given by equation (1.1), and that the corresponding lowest mode ofL0 is
10 = 0, so Strominger’s derivation (1.2)–(1.4) is correct. We will still be left with a
question: while the partition function tells us how many states there are, it does not in
itself tell us what those states are. It was argued in [56] (see also [57]) that the relevant
excitations are ‘would-be gauge’ degrees of freedom, excitations that would normally be
pure gauge, but that become physical as a result of boundary conditions. But this still does
not explicitly express the excitations in terms of conformal field theory states. In this final
section, I will speculate briefly on how we might obtain a more transparent description.

A possible starting point is Liouville theory, which provides a well-studied example of
an ‘effective central charge’ of the sort discussed in section 2. States in Liouville theory
fall into two classes [39]: the normalizable ‘macroscopic’ (or ‘anti-Seiberg’) states, whose
lowest Virasoro eigenvalue is given by (2.14), and the nonnormalizable ‘microscopic’ (or
‘Seiberg,’ or ‘Hartle–Hawking’) states, for which1 = 0 can occur. The division reflects a
breakdown of the usual operator-state correspondence of conformal field theory: insertions
of local operators give nonnormalizable ‘microscopic’ states. This example suggests that
if we are looking for BTZ states with10 = 0, we ought to investigate operator insertions
rather than concentrating on the standard (‘macroscopic’) Hilbert space of oscillators.

Now, the fundamental operator in a Wess–Zumino–Witten model is not the currentJ a,
but the group-valued fieldg. The conformal weight ofg is not integral: for a spin-j
SL(2,R) representation in the principal discrete series,

1j(g) = j (j − 1)

k − 2
, (6.1)

where j is a positive integer or half-integer. TheSL(2,R) WZW model is not yet
understood well enough to determine which values ofj appear in the operator product
expansion ofg, but let us suppose that all do‡. We must further determine the multiplicities.
This is also not known, but a reasonable guess is that the spinj occurs with a multiplicity
2j + 1, the Plancheral measure for the representationj [54].

(For a compact groupG, the Peter–Weyl theorem tells us that any functionF(g) can be
written as a sum over irreducible representations ofG. The Plancheral formula is, roughly
speaking, a generalization to noncompact groups, allowingF(g) to be expressed as an
integral over irreducible representations. LetĜ be the space of isomorphism classes of
unitary representations ofG, with U ∈ Ĝ a representation, and let

Û [F ] =
∫
G

F(h)U(h)dh, (6.2)

† See also [55]; note thatk in that reference isk/2 in the conventions of this paper.
‡ This is not obvious: for anSU(2) WZW model, the representations withj > k/2 completely decouple. But the
null states for affineSL(2,R) are quite different from those for affineSU(2), so the analogy may be misleading.
As Strominger has pointed out [58], one may also worry about whether the operators obtained in this fashion are
mutually local (or, for that matter, whether such a constraint is necessary).
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where dh is the Haar measure. Then the Plancheral formula tells us that

F(g) =
∫
Ĝ

Tr
(
Û (F )U(g)∗

)
dµ(U), (6.3)

where dµ(U) is the Plancheral measure [59]. This measure is thus a reasonable indication
of how many times a given irreducible representation should be counted.)

We can now use equation (3.6) to compute the number of states that can be created
by these operators, assuming that there are no relations among their products. From the
discussion following equation (3.7), we see that the resulting entropy is

ln ρ(1) ∼ 2π

√
k1

3
. (6.4)

Equation (6.4)almostagrees with Strominger’s expression (1.1)–(1.2) for the BTZ black
hole entropy. It differs by a factor of three inside the square root (or a factor of six if we
assume instead that each operator can appear only once and use (3.10) for the density of
states). I do not know how to explain this factor; it may indicate that this approach to
counting states fails. But it is also possible that the missing factor reflects the ‘bimodular’
properties of the WZW model. As Chau and Yamanaka have stressed [60], the group-valued
field g in a WZW model has two independent transformation properties: it transforms on
one side according to the standardSL(2,R) Lie algebra, and on the other side under an
appropriate quantum group. It is plausible that the ‘extra’ quantum group transformation
properties lead to a further degeneracy in the number of states within a given representation
of SL(2,R).

7. Conclusion

The derivation of BTZ black hole entropy in [4] seems too elegant to be wrong.
Unfortunately, it is also too simple to be completely right: as we have seen—and as
Strominger has already noted in [4]—it involves assumptions about the relevant conformal
field theory that are not obviously true for the black hole. It thus joins the previous
derivations as a highly suggestive, but not quite complete, computation of black hole entropy
from first principles.

With recent developments in higher-dimensional black hole entropy and anti-de Sitter
‘holography,’ the problem of giving a complete, explicit description of the degrees of
freedom responsible for BTZ black hole entropy seems increasingly urgent. But the task
is perhaps no longer hopelessly difficult. I will conclude this paper with a list of open
questions. The answer to any one of these would represent progress in our knowledge of
BTZ black hole entropy; answers to all would indicate a fairly solid understanding of the
subject.

1. According to the generalized Cardy formula (2.13), a minimum Virasoro eigenvalue
10 < 0 leads to a drastic increase in the asymptotic growth of the density of states;
a value10 = −1 has the same effect as 24 bosonic oscillators. Can this effect be
understood explicitly in terms of a counting argument like those of section 3?

2. For anSL(2,R) WZW theory, zero modes can give negative contributions toL0.
Is there any reason to prefer the spinj = −k/2, which would lead to a correction
−2410 = 6k = 3`/2G in the effective central charge, agreeing with equation (1.1)?

3. Is there any natural way to choose among the boundary conditions for diffeomorphisms
described in section 4?
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4. Supersymmetry suggests a minimum Virasoro eigenvalue of10 = 0, but the argument
seems to fail for super-Liouville theory, presumably because the candidate for an
SL(2,C)-invariant vacuum is not a normalizable state. Does this problem extend to
(2+1)-dimensional anti-de Sitter supergravity? Alternatively, are there other reasons to
expect that10 = 0 for some choice of boundary conditions consistent with the central
charge (1.1)?

5. Does the breakdown of the operator-state relationship in Liouville theory [39] apply as
well to the boundary conformal field theory induced from (2+ 1)-dimensional gravity?
If so, is there a way to explicitly count the nonnormalizable (‘microscopic’) states?

6. The operator-counting approach of section 6 is suggestive, but it depends on several
uncertain assumptions (appearance of all values ofj , multiplicities, independence and
consistency of operators) and misses a factor of three in the final answer. Is there a way
to make this argument more rigorous, or alternatively to demonstrate that it is incorrect?

7. The counting method of [27] differs from others in several respects. Some of the
differences are discussed below in appendix B, but others—most notably involving the
role of zero modes—remain mysterious. Can the connection between this method and
that of [4] be understood more clearly?

8. Can the Euclidean partition function methods of [30] and [31] be related to Lorentzian
state-counting methods? How are the states and zero modes mapped from one signature
to the other?
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Appendix A. Metrics, coordinates and conventions

The BTZ black hole is a solution to the vacuum Einstein equations in 2+ 1 dimensions
with a negative cosmological constant3 = −1/`2. In Schwarzschild-like coordinates, the
BTZ metric is [1]

ds2 = −N2dt2+N−2dr2+ r2
(
dφ +Nφdt

)2
(A.1)

with lapse and shift functions

N =
(
−8GM + r

2

`2
+ 16G2J 2

r2

)1/2

, Nφ = −4GJ

r2
(|J | 6 M`). (A.2)

The outer (event) and inner horizons are located at

r±2 = 4GM`2

1±
[

1−
(
J

M`

)2
]1/2

 , (A.3)

i.e.

M = r+2+ r−2

8G`2
, J = r+r−

4G`
. (A.4)
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The radial coordinater is adapted to the circular symmetry of the solution, and is
characterized by the property that a circle of constantr has a circumference 2πr. In
the exterior regionr > r+, we can instead choose a proper radial coordinateρ and a
dimensionless time coordinateτ , defined by [35]

r2 = r+2 cosh2 ρ − r−2 sinh2 ρ, τ = t/`. (A.5)

The metric then becomes

ds2 = − sinh2 ρ(r+dτ − r−dφ)2+ `2dρ2+ cosh2 ρ(r−dτ − r+dφ)2. (A.6)

Einstein gravity in 2+ 1 dimensions with a negative cosmological constant can be
re-expressed as a Chern–Simons theory for the groupSL(2,R) × SL(2,R) [23, 24], with
gauge potentials (connection 1-forms)

A(±)a = ωa ± 1

`
ea, (A.7)

whereea=eµadxµ is the triad andωa= 1
2ε
abcωµbcdxµ is the spin connection. The Einstein–

Hilbert action becomes

Igrav= ICS[A(−)] − ICS[A(+)], (A.8)

where

ICS= k

4π

∫
M

Tr
{
A ∧ dA+ 2

3A ∧ A ∧ A
}
, (A.9)

is the Chern–Simons action. The value of the coupling constantk depends on the choice
of representation and the definition of the trace in (A.9). With the choice [31]

T0 = 1

2

(
0 −1
1 0

)
, T1 = 1

2

(
1 0
0 −1

)
, T2 = 1

2

(
0 1
1 0

)
, (A.10)

one finds that

k = `

4G
. (A.11)

With these conventions, the metric in the affine Lie algebra (2.15) isgab = 1
2ηab, and

Q = −4 in equation (2.16)†.
For the BTZ black hole in the coordinates (A.6), the connection 1-forms are

A(±)0 = ± r+ ∓ r−
`

sinhρ (dτ ± dφ)

A(±)1 = ±dρ

A(±)2 = r+ ∓ r−
`

coshρ (dτ ± dφ).

(A.12)

From equation (4.2),α(±)a = ±δa1, confirming thatαaαa = 1/2. The fields (A.12) can be
converted by a simple gauge transformation to

A(±) = r+ ∓ r−
`

T2 (dτ ± dφ), (A.13)

from which the holonomies can be read off directly.

† I use the conventions of [31]:ηab = diag(−1, 1, 1) andε012= 1.
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Appendix B. Polarizations

The entropy calculation of [27] differs from others in two striking respects. First, while
most approaches treat left- and right-movers independently, this reference lumps the left-
and right-moving oscillators together and considers states created by both from a single
vacuum. Second, the computation involves an integration over a zero modeω̄ of the spin
connection at the horizon. These two features are actually closely related: as I shall now
show, both reflect the choice of boundary conditions or ‘polarization.’

The partition function for the boundary degrees of freedom can be obtained as a path
integral for (2+ 1)-dimensional gravity on a solid torusM, with appropriate boundary
conditions on the fields at∂M ≈ T 2. Such a path integral may also be interpreted as
determining a state on∂M, viewed as a function of the boundary data. The choice of
boundary conditions is thus equivalent to a choice of polarization, that is, of which phase
space variables to treat as ‘positions’ in the argument of the wavefunction.

In the approaches of [4] and [30], the boundary data are spatial componentsA
(±)
φ (or

A(±)z ) of the connection (A.7). In particular, the componentωφ = (A(+)φ + A(−)φ )/2 of the
spin connection is fixed at the boundary. The corresponding partition functions are

Z±A =
∑

ρ(N±) exp
{
2π iτ(1± +N±)} , (B.1)

where1± are the zero modes ofL±0 and

N± =
3∑
i=1

N±i (B.2)

are affineSL(2,R) number operators.
In [27], on the other hand, the boundary is fixed to be a null surface, with boundary

data† er2 = r+/
√

2 and ev2 = 0, wherev is a null coordinate. Now,ev2 and ωφ2 are
canonically conjugate, so the partition function in this new polarization can be obtained
from (B.1) by a functional Fourier transformation (see, for example, [61]):

Ze =
∫

[dω] exp

{
2ik̃

π

∫
ωφ

2ev
2dφ

}
Z+AZ

−
A . (B.3)

Since we are interested in the boundary conditionev
2 = 0, the exponential term in (B.3)

drops out, and since only the zero mode ofωφ
2 appears inZ±A , only the integration over

this mode is relevant. Thus

Ze =
∑
N+,N−

ρ(N+)ρ(N−)e2π iτ(N++N−)
∫

dω̄ e2π iτ(1++1−). (B.4)

Now, the conformal field theory of [27] describes excitations above a fixed black hole
background, unlike that of [4], for instance, in which the vacuum is anti-de Sitter space. In
particular, the black hole mass and angular momentum now determine the zero modes1±,
and the physical states are fixed by the condition thatL0 = 0 rather than by the relation
(1.3). The integral over̄ω is then exactly that of [27], and gives a factor of

exp

{
−2π iτ

(
2k̃2r2

+
`2

)}

† Note that the choice of group generators in [27] differs from that used elsewhere in this paper, and that the
coupling constant is therefore renormalized tok̃ = k/√2. The superscript 2 in this section is a Lie algebra index.
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in Ze. If we now letN+ + N− = N , the sum overN− in (B.4) may be performed by
the method of steepest descents. In particular, letρ(N±) be determined by the counting
arguments of section 3, with the three oscillators (B.2) in each sector:

ρ(N±) ∼ exp
{

2π
√
N±/2

}
. (B.5)

We then obtain∑
N−
ρ(N−)ρ(N −N−) ∼

∑
N−

exp
{√

2π
(√
N− +√N −N−

)}
∼ exp

{
2π
√
N
}
. (B.6)

Combining these results, we find that

Ze ∼
∑
N

exp
{

2π
√
N
}

exp

{
2π iτ

(
N − 2k̃2r2

+
`2

)}
. (B.7)

The physical state conditionL0 = 0 thus requires thatN = 2k̃2r2
+/`

2, and the density of
states in (B.7) reproduces the Bekenstein entropy (1.4).

This derivation highlights another key difference between [27] and Strominger’s
approach, the use of the ‘naive’ central chargec ≈ 3 in (B.5) rather than the much
larger central charge (1.1). This does not necessarily mean that the two derivations are
incompatible—the change of polarization described here is, in part, a change of basis, and
the counting of states can appear quite different in different bases. But it is clear that the
zero modes, which are responsible for the first factor in (B.7), again play a crucial and
rather mysterious role.
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[34] Blöte H W J,Cardy J A and Nightingale M P 1986Phys. Rev. Lett.56 742
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