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Abstract. It is shown that the global charges of a gauge theory may yield a 
nontrivial central extension of the asymptotic symmetry algebra already at the 
classical level. This is done by studying three dimensional gravity with a negative 
cosmological constant. The asymptotic symmetry group in that case is either 
R x SO(2) or the pseudo-conformal group in two dimensions, depending on the 
boundary conditions adopted at spatial infinity. In the latter situation, a 
nontrivial central charge appears in the algebra of the canonical generators, 
which turns out to be just the Virasoro central charge. 

I. Introduction 

In general relativity and in other gauge theories formulated on noncompact ("open") 
spaces, the concept of asymptotic symmetry, or "global symmetry," plays a 
fundamental role. 

The asymptotic symmetries are by definition those gauge transformations which 
leave the field configurations under consideration asymptotically invariant, and 
recently, it has been explicitly shown that they are essential for a definition of the 
total ("global") charges of the theory [1,2]. (For earlier connections between 
asymptotic symmetries and conserved quantities in the particular case of Einstein 
theory, see [3, 4] and references therein.) 

The basic link between asymptotic symmetries and global charges has been 
emphasized again in recent papers dealing with the monopole sector of the SU(5) 
grand unified theory [5] and with D = 3 gravity and supergravity [63, where it is 
confirmed that the absence of asymptotic symmetries prohibits the definition o f  
global charges. In the first instance, the unbroken symmetry group of the monopole 
solution is not contained in the set of asymptotic symmetries because of topological 
obstructions. This forbids the definition of meaningful global color charges 
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associated with the unbroken group. In the second case, the nontrivial global 
properties of the conic geometry, which describes the elementary solution of D = 3 
gravity, prevents the existence of well defined spatial translations and boosts, and 
hence, also of meaningful linear momentum and "Lorentz charge." 

In the Hamiltonian formalism, the global charges appear as the canonical 
generators of the asymptotic symmetries of the theory: with each such infinitesimal 
symmetry ~ is associated a phase space function H[~] which generates the 
corresponding transformation of the canonical variables. It is generally taken for 
granted that the Poisson bracket algebra of the charges H[~] is just isomorphic to 
the Lie algebra of the infinitesimal asymptotic symmetries, i.e., that 

{H [ { ] ,  H[r/ ]  } = H I  [4, r/] ]. (1.t) 

The purpose of this paper is to analyze this question in detail. 
It turns out that, while (1.1) holds in many important examples, it is not true in 

the generic case. Rather, the global charges only yield a "projective" representation 
of the asymptotic symmetry group, 

{/¢[~],/-/[7] } = H[[4,  7] ] + K[¢, 7]. (1.2) 

In (1.2), the "central charges" K[¢, q], which do not involve the canonical variables, 
are in general nontrivial, i.e., they cannot be eliminated by the addition of constants 
C¢ to the generators H[~]. 

The occurrence of classical central charges is by no means peculiar to general 
relativity and gauge theories, and naturally arises in Hamiltonian classical 
mechanics ([7] appendix 5). It results from the non-uniqueness of the canonical 
generator associated with a given (Hamiltonian) phase space vector field. Indeed, 
this generator is only determined up to the addition of a constant, which commutes 
with everything. Accordingly, the Poisson bracket of the generators of two given 
symmetries can differ by a constant from the generator associated with the Lie 
bracket of these symmetries. 

A similar phenomenon occurs with asymptotic symmetries in gauge theories. In 
that case, the Hamiltonian generator H[~] of a given asymptotic symmetry ~A differs 
from a linear combination of the constraints q~A(x) of the canonical formalism by a 
surface term J[¢] which is such that H[~] has well defined functional derivatives [8], 

H[~] = ~ d"x¢A(x)(~A(X) + J[~]. (1.3) 

But this requirement fixes J[~], and hence H[~], only up to the addition of an 
arbitrary constant. This ambiguity signals the possibility of central charges. 

Because the theory of central charges in classical mechanics is well known [7], 
we will only discuss here the aspects which are peculiar to gauge theories and 
asymptotic (as opposed to exact) symmetries. This will be done by treating three 
dimensional Einstein gravity with a negative cosmological constant A in detail. In 
that instance, we show that the asymptotic symmetry group is either R x SO(2), or 
the conformal group in two dimensions, depending on the boundary conditions 
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adopted at spatial infinity. In the latter case, a nontrivial central charge--actually 
familiar from string theory [9]--appears in the Poisson bracket algebra of the 
canonical generators. 

Three dimensional gravity with A < 0 is presented here primarily to provide an 
example of central charges in the canonical realization of asymptotic symmetries. 
However, the study of three dimensional gravity is not entirely academic and 
possesses some intrinsic interest apart from its connection with central charges. 
Indeed, previous experience with gauge theories has indicated that something can be 
learned from lower dimensional models about both the classical and quantum 
aspects of the more complicated four dimensional theory. In the gravitational case, 
three is the critical number of dimensions, since in fewer dimensions there is no 
Einstein theory of the usual type (i.e., with a local action principle involving only the 
pseudo-Riemannian metric). Thus, it is natural to turn to three dimensional models 
in an effort to better understand Einstein gravity in higher dimensions. 

The discussion involves some subtleties because the constraint algebra of general 
relativity is not a true algebra, but rather, contains the canonical variables. This fact 
has two implications: (i) the algebra of the asymptotic symmetries is a true algebra 
only asymptotically; (ii) standard group theoretical arguments cannot be used in a 
straightforward way. 

In the course of our study, we shall rely on a useful theorem which is proved in 
[ 10] and concerns Hamiltonian dynamics on infinite dimensional phase spaces. This 
theorem establishes, under appropriate conditions, that the Poisson bracket of two 
differentiable functionals contains no unwanted surface term in its variation, and 
therefore has well defined functional derivatives. This property is used to prove that 
the Poisson bracket of the asymptotic symmetry generators yields a (trivial or 
nontrivial) projective representation of the asymptotic symmetry group. It should be 
stressed that the techniques developed here in treating three dimensional gravity are 
quite general and can be applied, for instance, to four dimensional gravity to prove a 
similar representation theorem. Such a theorem has been implicitly used, but not 
explicitly demonstrated, for example in I-8, 12]. 

The example of three dimensional gravity with a negative cosmological constant 
also demonstrates the key role played by boundary conditions, which determine the 
structure of the asymptotic symmetry group but are not entirely dictated by the 
theory. (This was also pointed out in 1-11].) 

As a final point, let us note that the existence of a true central charge can be ruled 
out in the particular case when the asymptotic symmetries can be realized as exact 
symmetries of some background configuration. Indeed, in this situation the charges 
evaluated for that background are invariant under an asymptotic symmetry 
transformation, since the background itself is left unchanged. By adjusting the 
arbitrary constant in H[~] so that H[~] (background)= 0, Eq. (1.2) shows that 
K[~, ~/] vanishes. However, the important case of "background symmetries" does 
not exhaust all interesting applications of the asymptotic symmetry concept. For 
example, the infinite dimensional B.M.S. group [3,4] cannot be realized as the 
group of isometrics of some four dimensional metric. This gives additional 
motivation for analyzing the canonical realization of the asymptotic symmetries on 
general grounds. 
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II. Solutions to 3-Dimensional Gravity with A < 0 

This section provides a discussion of a solution to Einstein gravity in 2 + 1 
dimensions with a negative cosmological constant. This solution will help motivate 
our choice of appropriate boundary conditions to be imposed on the metric in 
general. 

In three dimensions, the gravitational field contains no dynamical degrees of 
freedom, so that the spacetime away from sources is locally equivalent to the empty 
space solution of Einstein's equations, namely anti-de Sitter space when A < 0. This 
is demonstrated by noting that the full curvature tensor can be expressed in terms of 
the Einstein tensor, and where the empty space Einstein equations hold, the curva- 
ture tensor reduces to that of anti-de Sitter space. 

Matter, which is assumed to be localized, has no influence on the local geometry 
of the source free regions, and therefore can only effect the global geometry of the 
spacetime. The basic solution which we consider then is locally anti-de Sitter space 
with radius of curvature R = ( -  l/A) 1/2, 

( 2)1 
dS 2 = - ~ + 1 df 2 + ~£  + 1 dr 2 + r2d~2, (2.1) 

but with an unusual identification of points which will alte r the global geometry. By 
identifying the points (t-= t', ~ = r', ~ = ~b') with the points (t-= t' - 2hA, ~ = r', ~ = 
q~'+ 2n~) for all t', r' and q~', this will have the effect of removing a "wedge" of 
coordinate angle 2n(1 - a )  and introducing a "jump" of 2hA in coordinate time. 
Because the Ricci tensor is defined locally, it is not modified by this unusual 
identification except at the origin ~ = 0. Hence, the vacuum Einstein equations will 
be satisfied everywhere except at the origin. 

The motivation for considering the spacetime just described is that it is the 
analogue of the conic geometry for 2 + 1 gravity with A = 0 [123, for which the 
wedge a ~ 1 is related to total energy and the jump A ~ 0 is related to total angular 
momentum. It is also interesting to note that, just as in the de Sitter case [13], a 
wedge cut from anti-de Sitter space provides a solution to Einstein's equations with 
the stress-energy tensor of a point mass. The metric (2.1) can also be assumed to 
apply to the empty region exterior to a more general compact source distribution. 

The geometrically invariant character of the wedge and the jump can be seen in 
the following way which does not depend on the details of the interior to the 
spacetime containing the source. First note that even though the spacetime is locally 
maximally symmetric, the only Killing vector fields consistent with the unusual 
identification of points are linear combinations of d/d tand didO. The vectors d/dF 
and d/d~ can be singled out uniquely (to within normalization constants) as the only 
two Killing vector fields which are everywhere orthogonal to one another. To within 
a normalization, d/d? is the unique vector field everywhere orthogonal to all Killing 
vector fields. 

So the curves which serve as the t, ~, ~ coordinate lines for the metric (2.1) can 
always be singled out. Furthermore, consider the proper length L of the curve of a 
trajectory of d/dc~ between points of intersection with a trajectory of d/df. The 
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change dL as the curve is moved a proper distance dS along the direction d/dfequals 

dS- = + (2n~)2 " 

For ~ < 1, the length L increases more slowly with proper distance than if the space 
were globally anti-de Sitter. Finally, the jump A is proportional to the proper time 
distance between points of intersection of the trajectories just considered. 

From now on, it will be more convenient to write the metric (2.1) with a 
continuous time variable. The coordinate transformation t = F+(A/c0~, r = ~, 
~b = (1/~)~ yields 

d S  2 = - -  - ~  + 1 (d t  - A d # ) )  2 + ~-g + 1 dr 2 + ~2r2d~32, (2.2) 

where #~ has period 2n, and there is no jump in the new time. The Killing vector fields 
in this coordinate system are linear combinations of d/dt and d/dc k. Also note that 
the trajectories of d/d~ will form closed timelike lines unless I A I < el R[ and 

A 2 R  2 
r 2 2> 

~ 2 R 2 _ A 2 "  

As a result, the spacetime constructed represents a reasonable solution to Einstein 
gravity only for I A I < ~1 R[ and large values of r; in particular it is valid in the 
asymptotic limit r--+ Go. 

I lL Global Charges and the R × SO(2) Asymptotic Symmetries 

The procedure for obtaining the global charges of a gauge theory within the 
Hamiltonian formalism has been well established [8]. The first step is to define the 
boundary conditions at spatial infinity which the generic fields should obey, and 
then identify the asymptotic symmetries which preserve this asymptotic behavior. 
Of course, for gravity theories in particular, in order to continue with the 
Hamiltonian formulation, the boundary conditions on the spacetime metric must be 
converted into boundary conditions on the canonical variables gi~, hi j- Likewise, the 
asymptotic symmetries of the spacetime determine the allowed surface deformation 
vectors G ° (p = _t_, i) for the space-like hypersurfaces under consideration. 

Now, for the boundary conditions and asymptotic symmetries of a gravitation 
theory to be acceptable, it must be possible to write the Hamiltonian as the usual 
linear combination of constraints [14] 

a"x~.(x)a%(x) (3.1) 

plus an appropriate surface term J[~]. This surface term J[~], which will be referred 
to as the charge from now on, must have a variation which will cancel the unwanted 
surface terms in the variation of (3.1). Then the Hamiltonian, 

H[~] = ~d"x~"(x)Offu(x) + J[~], (3.2) 

will have well defined variational derivatives, and may be used as the generator of 
the allowed surface deformations. 
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In practice, the charges J[~] are usually determined by looking at the surface 
terms coming from the variation of the "volume piece" (3.1) of the Hamiltonian, 
namely 

- lim ~ d"- 1S t {GiJkt[~±6gu; k -- ~±,kJ!~ij] + 2~aTr *t + (2~rC kt-  ¢~rc'k)6g,k}, (3.3) 
r---~ oo 

where G ~ik~ =½gl/2(g~kgjt +g~tgik__ 2g*jgk~) and the semicolon denotes covariant 
differentiation within a spacelike hypersurface. Using the assumed asymptotic 
behavior of the fields g,j, =~J and vectors ~u, this is rewritten as the total variation of a 
surface integral. Then the negative of this surface integral is, to within a constant, the 
charge J[~]. (As stated in the introduction, this constant represents the non- 
uniqueness of the canonical generators, and in Sect. V will be related to the possible 
existence of central charges in the algebra of these generators.) 

For the case of 2 + 1, A < 0 gravity, the analogy with 2 + 1, A = 0 gravity I-6, 12] 
suggests that we restrict the metric outside sources to the family of metrics defined by 
the two parameters ~ and A appearing in (2.2). This restriction serves as the 
boundary condition on the metric. Then the asymptotic symmetries coincide with 
the Killing vector fields d/dt and d/d~, and the asymptotic symmetry group 
associated with these boundary conditions is R x SO(2). 

The values of the charges associated with d/dt and d/dq~ for the metric (2.2) can be 
computed in the following way. Denote by ~ some linear combination of vectors 
d/dt, d/dc~ with components (3)¢~t, ~ = t, r, ~/~ in the spacetime coordinate system. Then 
the Z, r, ~b components ¢~ of this vector describe an allowed deformation of the 
surface outside the source. They are related to the spacetime components by 

¢± = N(3)~ ', 

~r = (3)~r + N~(3)¢,, (3.4) 

where N is the lapse and N', N* are the shifts for the spacetime coordinate system. 
The lapse and shifts and computed straightforwardly from (2.2); in particular, 

N ~ L 0 ~ g  ~ a 2 (~2R2 - A2)r 2 

N~=0, 
A(r 2 + R 2) 

N,~ = r2(~2R 2 _ A 2) - A2R2' 

and, since (3)~ = 0, the component ~ - - 0  always. 
The only nonzero components of the canonical variables needed for computing 

expression (3.3) are 

g~, = + 1 

-_.~2r2--Az(r2 ) g #  ~-~ + 1 , (3.5) 
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which gives 

Thus, the charges associated with the symmetries d/dt and d/dO are, to within 
constants, 

J[d/dt] = 4r~(1 - a), (3.6a) 

J[d/dO] = 4n~a. (3.6b) 

These are precisely the energy and angular momentum of locally fiat 2 + 1 gravity 
[6, 12], so that the limit of these charges as A--,0 is trivially correct. 

IV. The Conformal Group of Asymptotic Symmetries 

It is natural to question whether the restriction of the metric to the form (2.2) outside 
sources is too severe. Ideally, the boundary conditions could be weakened just 
enough so that the group of asymptotic symmetries is enlarged to the anti-de Sitter 
group in 2 + 1 dimensions, namely 0(2, 2). This section addresses such a weakening 
of the boundary conditions, although the group of asymptotic symmetries which 
naturally arises is not 0(2, 2), but the conformal group in two dimensions. 

The inspiration for the weakened boundary conditions comes from rewriting the 
metric (2.2) by making the replacements 

t/2 = - e ) '  

r ~ r  ~2 , (4.1) 

A 
O -~ ¢ - ~-ff~ t, 

so that the metric now reads 

dS2=_ R_~.+~2 dt2+2Aadtd4+\ R 2 +e2 dr2+(r2-AZ)dO 2. (4.2) 

Notice that when A = 0, the dominant contributions in this metric and in a globally 
anti-de Sitter space coincide with one another, equaling 

dr 2 + r2d49 z. 
\ R 2 f  + 7 

In this sense, it seems natural to consider the metric (4.2), at least when A = 0, to be 
"asymptotically anti-de Sitter." 

The notion of"asymptotically anti-de Sitter" must be made precise by specifying 
the boundary conditions that the metric should satisfy. If the anti-de Sitter group is 
to be a part of the asymptotic symmetries preserving these conditions, then the 
metric obtained from an anti-de Sitter transformation acting on (4.2) must also be 
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"asymptotically anti-de Sitter." By acting on (4.2) (with or without A = 0) with all 
possible anti-de Sitter group transformations, the following boundary conditions 
are generated: 

r 2 

9,, = - R-y + O(1), (4.3a) 

9tr = O(1/r3), (4.3b) 

9te = 0(1), (4.3c) 

R 2 
9,r = ~-- + O(1/r4), (4.4a) 

gr~ = 0(1/r  3), (4.4b) 

9 ~  = r z + 0(1). (4.4c) 

It is interesting to compare the boundary conditions (4.3, 4.4) with the boundary 
conditions on the metric for gravity in 3 + 1 dimensions with A < 0 [15]. By 
restricting the spatial sections in the 3 + 1 case to two dimensions (for example, by 
0 = re/2) this shows that the difference between the allowed metrics and anti-de Sitter 
space must fall off faster by one power of 1/r in 3 + 1 dimensions than in 2 + t 
dimensions. 

Having chosen boundary conditions for the metric, the asymptotic symmetries 
are described by vector fields which transform metrics of this form (4.3, 4.4) into 
themselves. Of course, these vector fields will include the anti-de Sitter group of 
symmetries, 0(2,2). Analysis of the Lie transformation equations for metrics 
(4.3, 4.4) shows that the spacetime components (3)~ of these vectors satisfy 

R 3 - 
(3) 3' = RT( t ,  c~) + ~ T(t, dp) + O(1/r4), 

(3)~r = rR(t, 4) + O(I/r), (4.5) 

with 

R 2 

~3)¢~ = ¢ , ( t ,  ¢) + Top(t, ¢) + o(1/r ~) 

R T.t(t, (~) = ~ ( t ,  c~) = - R(t, c~), 

R ~ t ( t ,  ~b) = T,( t ,  ~), 

R 
T(t, d)) = - ~ R,t(t, c~), (4.6) 

~(t ,  dp) = ½ R ~(t, c~). 

For the above vectors, the O(1/r 4) terms in the t, q~ components and O(1/r) terms 
in the r components are arbitrary, and just represent the pure, or "proper" [ 16], gauge 
transformations. That is, consider any deformation vector whose t, q~ components 
behave as O(1/r 4) and r component behaves as O(1/r). As will be shown below, such 
deformation vectors have no associated charge and the generators of these 
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deformations vanish weakly. Then the transformations described by these vectors 
are pure gauge, producing effects which are not to be considered as physically 
meaningful. So to be precise, the asymptotic symmetry group will be defined as the 
factor group obtained by identifying all transformations described by vectors (4.5) 
which may differ by O(1/r 4) terms in their t, 4) components, or by O(1/r) terms in their 
r components. 

The asymptotic symmetry group defined above is isomorphic to the pseudo- 
conformal group in two dimensions. This may be seen from (4.6) by noticing that the 
functions T(t, fb) and ~(t,q~) satisfy the conformal Killing equations in two 
dimensions with an indefinite metric, and once a solution T(t, el)), eI)(t, O) has been 
selected, the remaining functions R(t, e/)), T(t, ¢b), and ~(t, ~b) are determined. We will 
often refer to the asymptotic symmetry group as simply the conformal group. 

The conformal group also arises as the asymptotic symmetry group from a 
conformal analysis of infinity [17]. Denoting the metric (4.3,4.4) by dS 2, the 
conformally related metric dS 2= (1/r2)dS 2 has a surface at r = 0o with induced 
metric 

d~  = - ~ d t  2 + dc~ 2. 

The group of conformal motions on this surface is just the pseudo-conformal group 
in two dimensions. 

Because of the periodicity conditions in the coordinate ~b, the conformal Killing 
equations (4.6) can be Fourier analyzed. Then the asymptotic symmetries (4.5) may 
be written explicitly in terms of an integer n as 

A . = A _ .  = R 1--~-r2)COS~COSn~b + O(1/r 4) d/dt 

- [ ( l+~r22)s inRsinnq~+O(1/r4) ld /d~ 

+[ nsinTcos 4)+o(a/r)]d/dr, 
B.-- B_. = R 1 - -~ - r2  )sm~-smnq~ + O(1/r 4) d/dt 

- [ ( 1  nZR2\ nt 

+[rncos sin. +O,l+  r 
n2R2\ nt 

+ ~-r~ ) cos ~-sin n~b + O(1/r4)ld/d4~ 
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[ (  ,2.2  n, ] 
D n = - D _ n =  R 1-~2-rZ )cos-~sinndp+O(1/r4 ) d/dt 

+ 1 + 2~T-,lsin~-cosn4b + O(I/r 4) d/d~b 

+[rnsinRsinnf~+O(1/r)ld/dr. (4.7) 

The group algebra for the generators (4.7) may be written as follows: 

tA.,A.]= c.+. + [~--)c ._° ,  

r..,..I = (~ -~ )c .+ .  In+m, +t~--)C,-m, 

(,o) ro. ,o . l=-  - -7-  c.+.+[--~-)c._.,  

[An, Bm] = {n-m'~D fn+m'X I t ~ ) "+!  i t ~ J O ' l l '  

+ t - - ~ - )  " -° '  
n--m n + rn) 

/n-ink (n+m'~ 
r . . ,  c j :  - t - - ~ - ) . . + .  + t - ~ ) . . _ . ,  

{ , -m']A fn+m\ 
e.,,v°l = t -~ - -  ) ,+ . -  t ,~ - - jA ._ . ,  

( , - m )  ' , + m '  
ec,,v.] . . . . .  - ~ - -  v.+. + t - -~- )o° - . .  14.8) 

Notice that the anti-de Sitter group 0(2, 2) is the subgroup spanned by the 
vectors (4.7) with n = 0, I. However, 0(2, 2) is not an invarlant subgroup, so there is 
no obvious way to restrict the asymptotic symmetries to just the anti-de Sitter 
group. The situation here is similar to 3 + 1 asymptotically flat gravity which has the 
Spi group (similar to the BMS group) of asymptotic symmetries containing the 
Poincar6 group as a sub-group. In contrast, the group of asymptotic symmetries for 
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gravity in 3 + 1 dimensions with A < 0 is precisely the anti-de Sitter group 0(2, 3) 
[15]. 

To this point, the asymptotic symmetries have been treated as the group of 
vector fields preserving the spacetime metric (4.3, 4.4) under Lie transport. In the 
canonical formalism, these vector fields become the allowed asymptotic deform- 
ations of a spacelike surface which is described by the canonical variables 9~j, rc~J. 
From (4.3, 4.4), the lapse and shift are determined to be 

N 7 = -~ + O ( 1 / r ) ,  N "  = O(1 / r ) ,  N ¢' = O(1 / rZ ) ,  (4.9) 

so that the asymptotic behavior of the canonical variables is given by Eqs. (4.4) along 
with 

r~ "r = O(1 / r ) ,  rc r~ = O ( I / r 2 ) ,  rc 4'4° = O ( 1 / r S ) .  (4.10) 

However, in the canonical formalism, the spacelike surfaces are evolved according to 
Hamiltonian evolution, which generally differs from Lie transport unless the spatial 
Einstein equations t3)Gij = A Oij hold. To insure that spacelike surfaces initially 
obeying the boundary conditions (4.4) and (4.10) will preserve these boundary 
conditions under deformations generated by the Hamiltonian, it is necessary to 
impose further restrictions on the canonical variables [15]. 

In the appendix, we show that when the Hamiltonian constraints g/g, = 0 hold in 
a neighborhood of infinity, then the boundary conditions (4.4, 4.10) are preserved 
under Hamiltonian evolution. The reason it is possible to formulate the extra 
conditions on the canonical variables in terms of the constraints is because the 
spatial part of the Einstein tensor (3)G~i, which determines the difference between Lie 
and Hamiltonian evolution, is related to the constraints ~f ,  through the contracted 
Bianchi identities. In 2 + 1 dimensions, no further conditions on the canonical 
variables are needed, because there are precisely three components ~3)G~j to be 
restricted by the three constraints ~(f,. Of course, as long as the spacelike surface is 
imbedded in a spacetime which solves Einstein's equations, the constraints ~ ,  = 0 
will be satisfied anyway, so these conditions have no serious consequences. 

As described in Sect. III, the charge J[~] may be found by taking into account the 
asymptotic behaviour of the canonical variables (4.4, 4.10) and deformation vectors 
(4.5) and rewriting the integral (3.3) as the total variation of a surface integral. The 
negative of this surface integral, actually a line integral for 2 + 1 spacetime 
dimensions, determines the charge J [ ( ]  to within a constant which will be adjusted 
so that J[~] vanishes for globally anti-de Sitter space. Denoting the spatial metric 
for a globally anti-de Sitter spacetime by 0~j, the charge is 

J[¢] = lira ~ dS,{(J*J**[~!O~i k - ~±. , (g i j  - Oij)] + 2~'~z~'}, (4.11) 
r ~ O 0  

where the horizontal bar indicates covariant differentiation with respect to Ow This 
expression for J[¢] has the same form as the one obtained for 3 + 1 dimensional 
gravity with A < 0  [15]. Also note that, as previously mentioned, the charge 
vanishes for any surface deformation which describes a pure gauge transformation. 
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For the spacetime (4.2), the only nonzero charges are those associated with 
Ao = R d/dt and B o = - d/ddp, namely 

J[Ao] = 2 ~ R I 1 -  ~2 -- R~I ,  (4.12a) 

J[Bo] = -- 4no~A. (4.12b) 

The two vectors Ao and B o are essentially the generators of the asymptotic symmetry 
group R × SO(2) treated in Sect. III, differing from those quantities only in their 
normalization. However, the "energy" 1/R J[Ao] obtained from (4.12a), in contrast 
with (3.6a), no longer has the desired limit as R ~ ~ .  This should not be too 
surprising, since the coordinate change (4.1) involved the "canonical variables" in 
the form of~ and A. The coordinate t in (4.2) is no longer normalized to proper time 
in the R ~  ~ limit, and correspondingly, the normal components A~ of the 
deformation vector Ao, used to determine the energy, is no longer normalized to 
unity in this limit. 

Finally, it will be important for what remains to understand the asymptotic form 
of the _1_, r, q~ components of the surface deformation vectors 4. These components 
are given in Eqs. (3.4) in terms of the spacetime components of some conformal 
group vector 13)U restricted to a t = constant surface. The leading order terms in ¢" 
are completely determined once the spacetime components (3)~, are given. But to 
higher orders in l/r, 4 ± and ~0 depend on the unspecified O(1/r) term in the lapse N 
and on the shift N 0. Then in Hamiltonian language, the asymptotic form of the 
surface deformation vectors depends on the canonical variables. (See the appendix 
for details.) 

Actually, the dependence of ¢~ on the canonical variables is not relevant in 
establishing (4.11) as the proper surface integral to appear in the Hamiltonian, or in 
evaluating the charges for a spacetime such as (4.2), because for these purposes, ~u is 
only needed to leading order in 1/r. However, more than just the leading order terms 
in ~u are important for the requirement that the boundary conditions on the 
canonical variables be preserved under surface deformations. 

V. The Canonical Realization of Asymptotic Symmetries 

The primary goal of this article is to point out the possible existence of central 
charges in the canonical realization of asymptotic symmetries. In this section, we 
explicitly derive the Poisson bracket algebra of the Hamiltonian generators H[~] for 
2 + 1, A < 0 gravity with the conformal group of asymptotic symmetries, and obtain 
such central charges. It should be clear from this example that for any gauge theory, 
the global charges may form a central extension of the asymptotic symmetry algebra 
with potentially non-trivial central charges. 

The Hamiltonian generators for 2 + 1, A < 0 gravity have the form 

H[~J = S d2xCf'(x)~ff~,(x) + J[~], (S. 1) 

where ~(u are the standard constraints for general relativity, and J[~] are the 
charges. When the allowed deformations are defined by the conformal group of 
asymptotic symmetries, the charges J[¢] are given by the surface integral in Eq. 
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(4.11). These surface integrals are constructed in such a way that the Hamiltonian 
will have well defined variational derivatives, and as a result, wilt be a well defined 
generator of surface deformations through the Poisson bracket. 

The asymptotic symmetries are canonically realized by the "factor group" of 
surface deformation generators, which is defined by identifying two Hamiltonian 
generators if they describe the same asymptotic (conformal group) deformation and 
differ only by a pure gauge deformation. It is in this sense that we shall loosely refer 
to the Hamiltonian generators H[~] as providing a canonical realization, or else a 
central extension, of the conformal group algebra. On the other hand, fixing the 
gauge so that the constraints ~fu = 0 hold strongly is effectively the same as 
considering the factor group, because then the asymptotic part of the deformation 
vector ~u determines the surface deformation everywhere, and the charges 
themselves become well defined as generators through the Dirac bracket [18]. The 
algebra of these charges is identical to the factor group algebra of the Hamiltonian 
generators, so that the charges J[~] also realize the asymptotic symmetry group 
algebra. 

In principle, the algebra of the generators H[~] could be computed directly from 
the Poisson bracket. Such a calculation is typically very cumbersome, but for the 
case at hand, the situation is even worse because the deformation vector components 
~" depend on the canonical variables. This dependence was discussed at the end of 
Sect. IV, where it was also pointed out that ~" does not depend on the canonical 
variables to leading order in l/r, and thus its asymptotic form can be completely 
determined once a conformal group vector is chosen. The derivation which we 
present here does not depend on any further details of ~", and it should also be 
emphasized that the dependence of ~ on the canonical variables has no logical 
connection with the presence of central charges in the algebra of the generators. 

Our starting point for computing the algebra of the generators (5.1) is based on a 
theorem proved in [10]. The theorem is a completely natural one, stating that the 
Poisson bracket {H[~], HI-r/] } of two well defined generators H[~] and H[r/] is itself 
a well defined generator. As pointed out earlier, the charges J[~] are only defined up 
to the addition of a constant, which has been adjusted in (4.11) so that a globally 
anti-de Sitter space has no charge. As a result, once it is shown that the volume 
integral part of {H[~], H[r/] } is of the same form as that of (5.1), it follows that the 
surface term which must occur in that Poisson bracket can at most differ from the 
charge of Eq. (4.11) by a constant K[~, r/], which depends only on the asymptotic 
form of the deformations 4, q. Then given two generators H[~] and H[r/] of the form 
(5.1), their Poisson bracket may be written as 

{H[#], H[q] } = H[~] + K[~, r/], (5.2) 

where H[(]  is also a well defined generator of the form (5.1). 
In order to demonstrate that (5.2) is a central extension of the conformal group 

algebra, it must be shown that the asymptotic form of the deformation vector ( is 
given by the Lie bracket [4, r/]. Of course, this still leaves open the possibility that the 
constants K[(,  r/] = 0, so that the central extension is trivial. We will wait until the 
end to compute the constants K explicitly and show that they cannot be absorbed 
into a redefinition of the canonical generators. 
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The critical step in this analysis is to recognize that the "volume" term of the 
Poisson bracket (5.2) may be calculated by assuming that ~ and q are pure gauge, in 
which case the charges vanish. Indeed, the Poisson bracket is defined in terms of 
variational derivatives of the Hamiltonian generators. The definition of these 
generators includes the addition of surface integral charges in just such a way that 
variations will yield the "right-hand side" of the Hamiltonian equations, which are 
local in the canonical variables and deformation vectors, regardless of the 
asymptotic behavior of the deformation vectors. Then the generator obtained by 
computing the Poisson bracket under the assumption that ~ and r/describe pure 
gauge deformations can only differ from the generator which would be obtained 
without this assumption by terms which vanish when ¢ and r/ are pure gauge. 
Furthermore, these additional terms occurring in the Poisson bracket {H[~], H[~/] } 
are just surface terms arising from integration by parts. In view of the above 
mentioned theorem, they must be precisely those surface integrals necessary to make 
{H[~], H[q]  } a well defined Hamiltonian generator when the deformation vectors 
are allowed to describe conformal group transformations at infinity. 

So by assuming ~ and r/to be pure gauge, the charges vanish and the Poisson 
bracket can be computed as 

} = ~ dZxd2y{ ~U(x)Yt~u(x ), r/"(y)fft~,,(y)} 

d2xd2yCU(x)rl~(y) {~.(x),  )¢'~(y) } 

+ I n[q] } (x) 
+ I 
- I d2xd2y { CU(x), q'(Y) } ~et~u(x) ~',(y) 

- j" d 2 y { ~,(x), r/"(y) } fig'.~(y) ] ffgu(x). 

Here, [4, t/]}D is given by the usual surface deformation algebra for the vectors ~u, r/* 
[19], and 6,~ ~ represents the change in the vector components ~ under the surface 
deformations generated by H[r/]. Also, Poisson brackets such as {~,~gu(x), ~ , (y)}  
must be computed by taking into account the integration over ~"(x) and rF(y), since 
these are pure gauge deformation vectors and vanish sufficiently rapidly at infinity 
to insure that the variational derivatives of W,(x) and ~ , (y )  can be well defined. 
Then by the arguments above, the Poisson bracket must generally have the form 
(5.2), where 

~U(x) = [~, tT]fso + 6 ~  ~' -- 6¢rl" -- ~ d2y{~U(x), rff(y) } JC~(y), (5.3) 

even when ~ and ~/are conformal group vectors. 
In order to recognize ~ as a particular conformal group vector (4.5), recall that 

any such vector is uniquely determined, up to gauge terms, by its leading order 
contributions in 1/r. Since the leading order terms of all conformal group vectors are 
independent of the canonical variables, it follows that 6,¢ ~ and 6¢q ~ make only 
higher order contributions to ~u in Eq. (5.3). The last term in (5.3) also will not 
contribute to the leading order of flu, because it is a linear combination of constraints 
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and their derivatives, which must decrease faster than any power of 1/r (see the 
appendix). As a result, #" can be written to leading order as 

- '  [¢ ,  ~]sD. 
Furthermore, the fact that the right-hand side of (5.2) is a well defined generator 
insures that the non-leading order terms in Eq. (5.3) must work out in such a way 
that #" meets the requirements of a conformal group vector to all necessary orders 
in 1/r. 

The final step in the demonstration that (5.2) is a central extension of the 
conformal group algebra is to show that, to leading order in l/r, the surface 
deformation algebra [3, rl]sD coincides with the Lie algebra [3, r/] for conformal 
group vectors ¢ and ~/. This can be done by first writing the surface deformation 
algebra in spacetime coordinates in terms of the spacetime components of the 
deformation vectors (where the superscript (3), previously used to denote spacetime 
components, has been dropped): 

AT. 
[~, rl]tsD = (#i + Ni~t)rl, i + N ~,rf _ (~_~rl) ' 

[~,rl]~s.= gii(N)Z~trltj + ( N i j  N~'Y)~Jr l t  + (~J + N i~ ' ) r l i j - (~  *-~rl). 

These expressions are simplified by using the asymptotic forms for the spatial metric 
gij (4.4), lapse N and shifts N i (4.9), and by using Eqs. (4.6) to relate the leading order 
terms in the components of the conformal group vectors. Then the surface 
deformation algebra is seen to coincide with the Lie algebra to leading order in i/r, 
and 

~ [3, r/]. (5.4) 

The preceding arguments show that the conformal group content of the 
deformation vector #-- that  is, the part which is not pure gauge--is given by the Lie 
bracket [3, q]. As a result, Eq. (5.2) states that the Hamiltonian generators form a 
central extension of the conformal group algebra. We will now compute the central 
charges K[~, 1/] explicitly, and then show that the central extension is not trivial 
because the central charges cannot be absorbed into a redefinition of the generators. 

The central charges may be evaluated directly by recognizing that the Dirac 
bracket {J[~],J[r/] }* is interpreted as the change in the charge J[~] under the 
surface deformation of unit magnitude generated by J[q], so that 

a,J[~] = {J[~], J[~] }*. 
On the other hand, since the charges J[~] form a central extension of the conformal 
group algebra, 

3,J[#] = JE[¢, r/I] + K[¢, t/]. (5.5) 

The central charges K[#, r/] may be obtained from Eq. (5.5), which is most easily 
evaluated on the t = 0 surface of a globally anti-de Sitter spacetime, Our. Since the 
charge (4.11) has been chosen so that it vanishes for a globally anti-de Sitter 
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spacetime, then J[  [4, r/] ] = 0, and the charge J[~], before the surface is deformed, is 
also zero. In this case, the central charge K[~, r/] reduces to the value of the charge 
J[~] on the surface deformed by r/. 

To evaluate J[~] on the deformed surface, the expression (4.11) can be greatly 
simplified by specializing to r, q5 coordinates and using the known asymptotic form 
of the canonical variables. This gives 

r3 R2 )lg00 r2) 
J [ ~ ] = l i m ' d O ~ R ~ l + R - ~ ¢ a ( O ' r - - - r  ( r  R \ F  +~a _ +2~0rc;}, 

which may be simplified even further by recognizing that, to leading order in 1/r, 
z~0 ~ g~0- Then all that is needed are the metric components g.r. g+o, g,o at t = 0, 
which may be easily computed from the deformed anti-de Sitter spacetime as 

g,.. = 0.~ + ~,0,~. 

Carrying out the above for 4, r/equaling all possible combinations of A., B., C., 
D. (Eqs. 4.7), the only non-zero central charges are found to be 

K[A , ,  C,,] = 2rcRm(m 2 - -  l)61nllml, 
K[B. ,  D,.] = - 27rRm(rn 2 - 1)6j,ll~l. 

(Incidentally, if either ~ or q are pure gauge deformations, then the above argument 
shows that the associated central charge vanishes, as it should [19]. When ( is pure 
guage, this is so because J[¢] vanishes for all admissible field configurations. 
Likewise, because { J[~], J[r/] }* may be interpreted as - 6~ J[t/], this shows that the 
central charge vanishes whenever r/is pure gauge.) 

The Dirac bracket algebra of the charges can now be written as follows: 

{J[AJ, J[Am] 
{J[B.],J[Bm] 
{J[C.],J[C,.] 
{J[O.],J[V.] 
{ J[a.], J [B.,] 
{J[A.], J[C,.] 
{J[A.],J[Dm] 
{JEB.], JEC,.] 
{J[BJ, J[Drn] 
{ J[C.], J[Dm] 

}* = J [ [ A . , A m ] ] ,  

}* = J [ [ B . , B . ] ] ,  

}* =J[[C.,Cm]], 
}* =J[[D . ,D , . ] ] ,  

}* = J [ [ A , , B m ] ] ,  

}* = J [ [ A . ,  C,.]] + 27cRm(m 2 - 1)rr.llml, 
}* = J [ [A . ,  Dm]], 

}*=JEEB. ,C , . ] ] ,  

}* = J[[B . ,  D,.]] - 2rcRrn(m z - 1)rl.ll,. I, 

}* = JEEC.,Dm]]. (5.6) 

It should be clear from this calculation that if the asymptotic symmetries were all 
exact symmetries of anti-de Sitter space, then the central charges would vanish. As 
pointed out in the introduction, for any theory whose asymptotic symmetries are 
exact symmetries of some background field configuration, the central charges can be 
arranged to vanish simply by adjusting the charges to zero on this background. 

In the present case where the asymptotic symmetries cannot be realized as exact 
symmetries of some background, it is easy to see that the central charges are not 
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trivial. For instance, the Lie bracket [A., C.] from Eqs. (4.8) is realized in (5.6) as 

{J [a . ] ,  J [ C . ]  }* = nJ[Ao]  + 2rcRn(n 2 - 1). (5.7) 

If the charges are redefined by J [ A . ]  ~ J[A.]  + a. and J [C. ]  ~ J [ C . ]  + c. ,  then 
(5.7) becomes 

{J[A.], J [ C . ]  }* = nJ[Ao]  + n[ao + 2TcR(n 2 --  t)]. 

It is clear that the constants a., c. can never be chosen so that the central charges are 
eliminated for all values of n. 

It is interesting to note that the algebra (5.6) is actually a direct sum of two 
Virasoro algebras. The change of basis 

io" io- B L.=TA.+ 
ic~ ia 1 

K .  = ~ A . - - ~ B . - ~ C . - ½ D . ,  

is invertible for A., B., C., D. in terms of L., L_. ,  K., K_, ,  and the algebra of the 
associated charges becomes 

{J[L.],  J [  L,.] }* = (n - m)J[  L .  + ,.] + 2~i~ Rn(n 2 - 1)6.,_,., 

{J[K.],  J [  K, .]  }* = (n - m)J[  K .  + ,.] + 2rcia Rn(n 2 _ 1 )~., _ ,., 

{ J [ L J ,  J[Km]  }* = 0, 

This is just the familiar algebra for the canonical generators of string theory [9]. 
As a final comment, we briefly point out some analogies with four dimensional 

gravity in the asymptotically flat case. The asymptotic symmetry group is the infinite 
dimensional "Spi group" [4] as long as the behavior of the gravitational variables at 
spatial infinity is not restricted by means of parity conditions as in [8]. Then it turns 
out that a "central charge" appears in the canonical realization of these symmetries, 
in the sense that the Spi generators transform inhomogeneously under an 
asymptotic Spi transformation. However, the homogeneous part of the Poisson 
bracket algebra of the generators does not yield a representation of the Spi algebra 
(the bracket of two boosts contains an unwanted metric dependent, angle dependent 
transformation) [20], so that the situation is actually much worse in this case. This 
gives an additional motivation for imposing extra boundary conditions to eliminate 
the supertranslation ambiguities [8, 4]. 

Appendix: The Initial Value Problem 

In the main text, we have shown that a spacetime metric obeying the boundary 
conditions (4.3, 4.4) is asymptotically invariant under spacetime changes of coordi- 
nates (or "diffeomorphisms") which become asymptotically elements of the two 
dimensional conformal group in the sense of(4.5). We have also shown that in such a 
spacetime, the spatial metric and its canonical momentum fall off as in (4.4, 4.10) on 
the appropriate spacelike sections. 

Then consider the following initial value problem: suppose that on an initial 
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surface t = 0, data (9~j, 7~u) are given which have the asymptotic behavior (4.4, 4.10). 
Can appropriate lapse and shift functions be found such that these initial data can be 
developed, by means of Hamilton equations, into a spacetime metric obeying 
(4.3, 4.4)? 

This question is not the true converse of the analysis of Sect. IV, because Lie and 
Hamiltonian transports only coincide on shell. The difference between them is 
measured by the dynamical components (3)Gij o f  the Einstein tensor. These 
components turn out to decrease too slowly at infinity, so that they can only be 
neglected under stronger boundary conditions on the initial data (see below). This 
phenomenon also occurs in 3 + 1 gravity [15]. 

In order to derive these stronger conditions, first note that the initial data cannot 
simply be propagated by means of the generator H[¢~ds), ¢f~ds)], since this generator 
does not preserve the boundary conditions. Here ~(,ds)• and ¢~aes) are the components 
in the adS orthogonal frame adapted to the surfaces t = constant of a generic 
"conformal vector field," 

~iLadS) ~ . r l  ( 3 ) ~ t  k = x ,  ( a d s )  ~ ,  ~(adS)  = ( 3 ) ~  k . (A.1) 

To preserve the boundary conditions, the deformation vector components ~l and ~k 
must include "correction terms" of order 

4± "± =O(1/r), - -  ~(adS)  

4"-  ~;d~ = O0 /r), 

¢*- ¢~.~s~ = O(l/r~),  

(A.2) 

(A.3) 

(A.4) 

and these are not "pure gauge" (except 4' - ~[ad S) which will no longer be of interest). 
From the spacetime point of view, the necessity of (A.2, A.4) could have been 
anticipated by noticing that such terms are precisely induced by taking into account 
the difference between the actual lapse and shift, and the anti-de Sitter ones in the 
formulas 

~± = N±(3)~t, ~e, = (3)~e, _~_ Ne,(3)~t (A.5) 

(See the discussion at the end of Sect. IV.) 
For definiteness, consider the case of an asymptotic time translation (~3~¢t= 

1, (3)~k= 0). It is easy to see that ¢0_  ~,ds) is entirely determined up to the 
appropriate order by the condition that {Ore,, H[~] } be of the same order as 9re, (i.e., 
O(1/r3)). Once this is done, all the brackets {Ou, H[~] } behave correctly at infinity so 
that only the 7t u equations remain to be analyzed. 

Elementary computations show that {re% H[~] } is of the same order as n re,, but 
that {rc'r,H[~]} and {rce,e,,H[~]} generically decrease too slowly unless ~l is 
properly adjusted. By using the Ricci identity for second covariant derivatives of 
vectors, then the two conditions 

{n", H[~] } = O(1/r), (A.6a) 

{re e~e,, H[~] } = O(1/r 5) (A.6b) 
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admit a solution for ~ ± - ~{adS~ if and only if the curvature (2)R of the spatial sections 
approaches 2A at infinity as 

(2)R - -  2A = O(1/r4). (A.7) 

What would naively be expected from (4.4) is ~Z)R - 2 A  = O(1/r2), which is the reason 
why the boundary conditions (4.4, 4.10) at infinity must be strengthened. 

When (A.7) holds, the general solution to Eqs. (A.6) is given by 

4 ± - ~t~ds) = f ( g i j ,  91j,k, 91j,g,) + O(1/r3), (A.8) 

where f = O(t/r) is a given local function of the metric and its derivatives, and whose 
explicit form will not be of interest here. The O(1/r 3) term is arbitrary and 
corresponds to a pure gauge transformation. 

This is not the end of the story, for the compatibility condition (A.7) must be 
preserved in time by the Hamiltonian equations. This problem is most conveniently 
analyzed by noticing that (A.7) is equivalent to 

.~(~ ~ = O(1/r*), (A.9) 

whose bracket with the generator H[~] is easy to evaluate. This naturally leads to 
the additional conditions that the constraint functions should decrease faster than 
any power of 1/r. 

~ = O(1/r") for all n. (A.10) 

These conditions are obviously preserved under asymptotic transformations by 
the conformal group and hence, form a closed set. Accordingly, when the initial data 
obey (4.4,4.10) and solve the constraints in the neighborhood of the surface at 
infinity, they can be propagated in a manner compatible with the requirement that 
the resulting spacetime be asymptotic to anti-de Sitter. This answers the question 
raised in the beginning of the appendix. Also note that under these conditions, Lie 
and Hamiltonian evolution are equivalent and the spacetime evolved from the 
initial data obeys all of Einstein's equations in the vicinity of infinity. 

As a final point, we remark that the ~u dependence on the canonical variables has 
no influence on the expression of the charges (which follows from varying HI l l ) .  This 
is because the surface term which arises upon taking (A.8) into account is equal to 
zero, since it is proportional to the constraint functions ~ u .  
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Note added. Cocycles have recently become very popular in view of their connection with anomalies 
[21]. Cocycles also appear in the field ofa monopole [22], and arise in other areas of physics as well [23]. 
Our paper shows the existence of possibly non-trivial two-cocycles (central charges) in the canonical 
realization of the asymptotic symmetry algebra. 
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