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Existence of local degrees of freedom for higher dimensional pure Chern-Simons theories
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The canonical structure of higher dimensional pure Chern-Simons theories is analyzed. It is shown that these
theories have generically a nonvanishing number of local degrees of freedom, even though they are obtained by
means of a topological construction. This number of local degrees of freedom is computed as a function of the
spacetime dimension and the dimension of the gauge group.

PACS number~s!: 11.10.Kk, 11.15.Tk
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Three-dimensional pure Chern-Simons theory is w
known to possess higher dimensional generalizations. Th
generalizations are theories in 2n11 dimensions constructe
from characteristic classes in 2n12 dimensions in exactly
the same way as three-dimensional Chern-Simons theo
built out of the four-dimensional characteristic classes. M
precisely, if Fa is the curvature two-formFa5dAa

1 1
2 f bc

a Ab`Ac associated with the gauge field one-formAa,
wheref bc

a are the structure constants of the gauge group,
ga1•••an11

is a rankn11, symmetric tensor invariant unde
the adjoint action of the gauge group, then one defines
Chern-Simons LagrangianLCS

2n11 through the formula

dLCS
2n115ga1•••an11

Fa1`•••`Fan11. ~1!

The three-dimensional case is obtained by takingn51,
which yieldsdLCS

3 5gabF
a`Fb, wheregab is an invariant

metric on the Lie algebra~necessarily proportional to th
Killing metric if the Lie algebra is simple!.

The Chern-Simons actionI 5*MLCS
2n11 is invariant under

standard gauge transformations

deAm
a 5Dmea. ~2!

It is also invariant under spacetime diffeomorphism
dhAm

a 5£hAm
a , sinceLCS

2n11 is a (2n11)-form. The space-
time diffeomorphisms can also be represented as

dhAm
a 5hnFmn

a . ~3!

Indeed, these symmetries differ from the Lie derivative o
by a gauge transformation and are often called impro
diffeomorphisms@1#. If the only symmetries of the Chern
Simons action are the diffeomorphisms~3! and the gauge
transformations~2!, then we shall say that there is no acc
dental gauge symmetry. How this translates into an algeb
condition onga1•••an11

will be described precisely below.
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Of particular interest are the Chern-Simons theories w
gauge group SO(2n11,1) or SO(2n,2) in 2n11 dimen-
sions because they define gravitational theories@2#. For
n51, one recovers the standard Chern-Simons formula
of Einstein gravity with a cosmological constant@3#. For
n.1 one gets the Einstein-Hilbert action supplemented
Lovelock terms@4# with definite coefficients. These gravita
tional theories admit intriguing black hole solutions@5# gen-
eralizing the three-dimensional black holes of Ref.@6#.

One of the striking features of Chern-Simons theory
three dimensions is the fact that it has no local degree
freedom. This is because the equations of motion

gaa1•••an
Fa1`•••`Fan50 ~4!

reduce toFa50 in the three-dimensional case. Thus, t
space of solutions of Chern-Simons theory in three dim
sions is the finite-dimensional moduli space of flat conn
tions modulo gauge transformations.~Note that the diffeo-
morphisms lead to no further quotientizing because th
vanish on shell.!

Since the higher dimensional Chern-Simons theories
constructed along the same topological pattern as their th
dimensional analogue, one may wonder whether they
also devoid of local excitations and have only global degr
of freedom. One of the purposes of this Rapid Communi
tion is to explain why this is not the case. We also cou
explicitly the number of local degrees of freedom as a fu
tion of the dimensions of spacetime and of the gauge gro
It turns out that the crucial ingredient that controls the wh
analysis is the invariant tensorga1•••an11

.
We start the discussion with the five-dimensional ca

(n52) and anN-dimensional Abelian group@G5U(1)N#.
This case already contains all the main points that we wan
address and is particularly simple because the invaria
condition imposes no restriction on the tensorga1•••an11

. We
shall deal with the general situation of an arbitrary gau
group afterward.
R593 © 1996 The American Physical Society
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Assume first that there is only one single Abelian fie
The equations of motion implyF`F50; i.e.,F has at most
rank 2. In the generic case,F has exactly rank 2~in the space
of solutions of F`F50, the solutionF50 has measure
zero!. SinceF is a closed two-form, one may bring it locall
to the canonical formF5dx1`dx2 by a diffeomorphism
~Darboux theorem for presymplectic forms of rank 2!. Thus,
the quotient space of the solutions of the equations of mo
modulo the gauge transformations~2! and spacetime diffeo
morphisms~3! has locally one and only one solution. Th
implies that the theory has no local degrees of freedom
agreement with the findings of Ref.@7#.

The case of a single Abelian gauge field is, howeve
poor representative of what happens in the general situa
and, in that sense, is somewhat misleading. The reaso
that, in contrast with the three-dimensional Chern-Simo
theory, we have also used the diffeomorphisms to prove
absence of local degrees of freedom. Indeed, these dif
morphisms are needed to bringF to its canonical form. But
if there are many Abelian fields, then there are manyF ’s to
be brought simultaneously to canonical form and this is
possible with a diffeomorphism. Thus, for many (N.1)
Abelian fields, one expects the existence of local degree
freedom unless the invariant tensorgabc happens to have
been chosen in some peculiar way that enlarges the num
of gauge symmetries of the theory~accidental gauge symme
tries!.

A typical example of a theory with accidental gauge sy
metries is obtained by taking all the mixed components
gabc to vanish, so that the action is just the direct sum ofN
copies of the action for a single Abelian field. The theory
then clearly invariant under diffeomorphisms acting indep
dently on each copy and has no degrees of freedom.
there is no reason to take vanishing mixed components
gabc . If these mixed components differ from zero~and
cannot be brought to zero by a change of basis!, then the
action is not invariant under diffeomorphisms acting ind
pendently on each gauge field componentAa, because the
invariance of the cross terms requires the diffeomorph
parameters for each copy to be equal, thus gluing all of th
together in a single symmetry.

In order to substantiate this discussion, let us count p
cisely the number of local degrees of freedom. This num
does not depend on which method~Lagrangian or Hamil-
tonian! one chooses to compute it@8#. In our case, it turns
out to be more convenient to follow the Hamiltonian analy
@9#. To that end we shall assume that the spacetime man
M has the topologyR3S, whereS is a four-dimensional
manifold. We then decompose the spacetime gauge field
form Aa as Am

a dxm5A0
adt1Ai

adxi where the coordinatet
runs overR and thexi are coordinates onS. Although there
is no spacetime metric to give any meaning to express
such as timelike or spacelike, we will call time the coord
natet and we will say thatS is a spacelike section as shor
hand expressions.

It is easy to see that the Chern-Simons action depe
linearly on the time derivative ofAi

a ,

I 5E
R
E

S
@ l a

i ~Aj
b!Ȧi

a2A0
aKa#, ~5!
.
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whereKa is given by

Ka52gabce
i jkl Fi j

b Fkl
c . ~6!

The explicit form of the functionl a
i (Aj

b) appearing in Eq.~5!
is not needed here but only its ‘‘exterior’’ derivative in th
space of spatial connections, which reads

Vab
i j [

d l b
j

dAi
a 2

d l a
i

dAj
b 524e i jkl gabcFkl

c . ~7!

The equations of motion obtained by varying the acti
with respect toAi

a are given by

Vab
i j Ȧ j

b5Vab
i j D jA0

b , ~8!

while the variation of the action with respect toA0
a yields the

constraintKa50.
Since the action is linear in the time derivatives ofAi

a , the
canonically conjugate momentapa

i are subject to the 4N
primary constraints

fa
i 5pa

i 2 l a
i '0. ~9!

These constraints transform in the coadjoint representatio
the Lie algebra because the inhomogeneous terms in
transformation laws ofpa

i and l a
i cancel out.

It turns out to be more convenient to replace the co
straintsKa by the equivalent set

Ga5Ka2Difa
i . ~10!

The surface defined byKa50, f i
a50 is equivalent to the

surface defined byGa50, f i
a50. The new constraintsGa

generate the gauge transformations~2!, e.g.,
$Ai

a ,*SlbGb%5Dil
a.

The Hamiltonian action takes the form@9#

I 5E
R
E

S
@pa

i Ȧi
a2A0

aGa2ui
afa

i #. ~11!

The Poisson bracket among the constraints is given by

$fa
i ,fb

j %5Vab
i j , ~12!

$fa
i ,Gb%5 f ab

c fc
i , ~13!

$Ga ,Gb%5 f ab
c Gc , ~14!

where f ab
c are the structure constants of the Lie algeb

which vanish in the Abelian case that we are consider
now. It follows from the constraint algebra that there are
further constraints. The consistency conditionĠa50 is au-
tomatically satisfied becauseGa is first class while the othe
consistency equationḟa

i 5Vab
i j uj

b50 will just restrict some
of the Lagrange multipliersuj

b .
Equations~13! and~14! reflect that the constraintsGa are

the generators of the gauge transformations and that the
straintsfa

i transform in the coadjoint representation. Th
means, in particular, that theGa’s are first class, as men
tioned above.
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The nature of the constraintsfa
i is determined by the

eigenvalues of the matrixVab
i j . It turns out that the matrix

Vab
i j is not invertible on the constraint surfaceKa50. Indeed,

using some simple combinatorial identities, one can pr
that Ka given in Eq.~6! andVab

i j satisfy the relation

Vab
i j Fk j

b 5dk
i Ka . ~15!

This equation shows that, on the constraint surfaceKa50,
the matrix Vab

i j has four null eigenvectors (vk) j
b5Fk j

b ,
(k51, . . . ,2n). The corresponding four first-class co
straints, namely,

Hi[Fi j
a fa

j , ~16!

generate the spatial diffeomorphisms~3!. They satisfy the
spatial diffeomorphism algebra, up to gauge transformatio
The presence of these constraints is of course not a sur
because the Chern-Simons action is invariant under dif
morphisms for any choice of the invariant tensorgabc .

One could also expect the presence of another first-c
constraint, namely, the generator of timelike diffeomo
phisms. However, as we shall see below, this symmetr
not independent from the other ones and hence its gene
is a combination of the first-class constraintsGa andHi .

We now examine whether the first-class constraintsGa
and Hi are independent and constitute a complete set. T
depends on the properties of the invariant tensorgabc and,
for a definite choice ofgabc , it also depends on the phas
space location of the system. This is due to the fact that
constraint surface of the Chern-Simons theory is strati
into phase space regions where the matrixVab

i j has different
ranks.

We will say that an invariant tensorgabc is genericif and
only if it satisfies the following condition: There exist solu
tions Fi j

a of the constraintsKa50 such that~i! the matrix
Fk j

b ~with b, j as row index andk as column index! has maxi-
mum rank 4, so that the only solution ofjkFk j

b 50 is jk50
and therefore the four null eigenvectors (vk) j

b5Fk j
b ,

(k51, . . . ,4) are linearly independent, and~ii ! the
(4N)3(4N) matrix Vab

i j has the maximum rank compatib
with ~i!, namely, 4N24; in other words, it has no other nu
eigenvectors besides (vk) j

b5Fk j
b , (k51, . . .,4).

We will also say that the solutionsFi j
a of the constraints

Ka50 that allow for this condition to be satisfied arege-
neric. The reason for this name comes from the followi
observation. For a given genericgabc , a solution satisfying
both conditions~i! and~ii ! will still satisfy them upon small
perturbations since maximum rank conditions correspon
inequalities and define open regions. Conversely, a solu
not satisfying conditions~i! or ~ii !, i.e., located on the surfac
where lower ranks are achieved~defined by equations ex
pressing that some nontrivial determinants vanish!, will fail
to remain on that surface upon generic perturbations con
tent with the constraints. Nongeneric solutions of the c
straint equations are also of physical interest but will not
considered here~see Ref.@10# for a more complete analysis!.

The genericality condition represents the general cas
the sense that it defines an open region in the space o
invariant tensors. Indeed, as we have pointed out, these
e
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gebraic conditions enforce inequalities. Therefore, to achi
a lower rank, some extra conditions would have to be sa
fied and this would putgabc on a surface of lower dimen
sionality in the space of the invariant tensors.

The physical meaning of the above algebraic condition
straightforward. They simply express that the gauge trans
mations~2! and the spatial diffeomorphisms~3! are indepen-
dent and that there are no other first-class constraints am
the fa

j besidesHi .
In order to illustrate these points and to show that

genericality condition is not self-contradictory and can
actually satisfied, let us work out a simple example. Tak
nondiagonalgabc of the form

ga1150, ga8b81[ga8b8, invertible, ~17!

where a8,b8, . . . 52,3, . . . ,N. Then, the constraints

Ka50 are solved by takingFi j
a850 and Fi j

1 arbitrary. The
matrix Vab

i j has the tensor product form

V1a
i j 50, Va8b8

i j
5ga8b8e

i jkl Fkl
1 , ~18!

and is thus of rank 4(N21) provided thatFi j
1 is taken to be

invertible. The invertibility ofFi j
1 also ensures that the onl

solution of jkFk j
b 50 is jk50. Therefore, we can conclud

that the invariant tensorgabc given in Eq. ~17! is generic.
Also, this example shows the stratification of phase spa
While the solution that we have discussed@with det(Fi j

1 )
Þ0# is generic, solutions of the same form but wi
det(Fi j

1 )50 belong to one of these lower dimensional no
generic phase space regions.

Thus, for generic theories, the only first-class constra
are Ga50 and Hi50, which shows that the generator o
timelike diffeomorphisms is not independent fromGa and
Hi . This may be verified explicitly by writing the action of
timelike diffeomorphism parametrized byjm5(j0,0) on Ai

a

as @see Eq.~3!#,

djAi
a5j0Fi0

a . ~19!

Now, the equations of motion~8! areVab
i j F0 j

b 50. Since the
only zero eigenvectors of the matrixVab

i j areFk j
b , there must

exist somezk such thatF j 0
b 5zkF jk

b . Inserting this result in
Eq. ~19! we obtain

djAi
a5j0zkFik

a , ~20!

which is an improved spatial diffeomorphism with parame
j0zk.

We can now count the number of local degrees of fr
dom in the generic case. We have, 234N canonical vari-
ables (Ai

a ,pa
i ), N first-class constraintsGa associated with

the gauge invariance, four first-class constraintsHi associ-
ated with the ~spatial! diffeomorphism invariance, and
4N24 second-class constraints~the remainingfa

i ). Hence,
we have

1
2 @8N22~N14!2~4N24!#52N222N ~21!

local degrees of freedom. The formula does not apply
N51 because the spatial diffeomorphisms are not indep
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dent in that case, as can be checked directly on the cano
form F5dx1`dx2. From ~21! we see that, forN52, there
are no degrees of freedom. This happens because one
not use all the diffeomorphism invariance to bring the fi
F1 to a canonical form. One may then use the residual
feomorphism invariance to bring the second field stren
F2 to a canonical form also. However, forN.2, there are
degrees of freedom.

The analysis has been performed so far in the Abe
case. In the non-Abelian case, the analysis proceeds s
larly. The above formulas have been actually written in su
a way that they remain true in the non-Abelian case. T
only difference is that the invariance condition now strong
restricts the possiblegabc . So one may fear that there cou
be a conflict between the invariance condition and the
nericality condition. This is not the case and we have verifi
explicitly that the three-index invariant tensor of SU(p)
(2,p<6) is generic. Likewise the gravitational Cher
Simons theories in five dimensions are also generic
therefore do carry local degrees of freedom~this was antici-
pated in quite a different way by Chamseddine who analy
perturbations around a nontrivial background@2#!.

What has been done in five dimensions can be repeate
higher ~odd! dimensions. Provided the invariant tens
ga1•••an11

satisfies a genericality condition that is th
straightforward generalization of the one appropriate to fi
dimensions, one finds that the canonical formulation
Chern-Simons theory involvesN12n first-class constraints
and 2nN22n second-class constraints in the generic ca
The first-class constraints generate the gauge symmetrie~2!
and the spatial diffeomorphisms~3!. As in five dimensions,
the timelike diffeomorphisms can be expressed in terms
the other gauge symmetries. Since there are 2nN conjugate
pairs, the number of local degrees of freedom is equal to

No.5nN2n2N, ~22!

where N.1 and n.1. This expression vanishes only fo
J.
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n52 andN52. Again, one may also verify that the gene
cality condition is not self-contradictory by exhibiting invar
ant tensors that satisfy it. For instance, one may take a d
generalization of Eq.~17!. The complete analysis, where th
explicit isolation of the second-class constraints is perform
and the Dirac brackets is computed, will be reported el
where@10#.

When the invariant tensorga1•••an11
is not generic,Vab

i j

has further zero eigenvalues and thus, there are further g
symmetries. This implies that the number of degrees of fr
dom is smaller than in the generic case and may even van
As we mentioned above, an extreme example is given bN
uncoupled Abelian gauge fields, where the extra gauge s
metries are diffeomorphisms acting independently on e
individual copy.

To conclude, we have shown that higher dimensio
Chern-Simons theories, even though constructed along
same topological pattern as in 211 dimensions, do have
local degrees of freedom provided that the invariant ten
that enters the action satisfies an appropriate generic
condition. This condition implies that there are no acciden
gauge symmetries, so that the number of gauge symme
grows more slowly with the dimension of the gauge gro
than the number of dynamical variables. This result can
be anticipated by analyzing the case of a single Abelian fie
which is not representative of the general case.
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