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Existence of local degrees of freedom for higher dimensional pure Chern-Simons theories
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The canonical structure of higher dimensional pure Chern-Simons theories is analyzed. It is shown that these
theories have generically a nonvanishing number of local degrees of freedom, even though they are obtained by
means of a topological construction. This number of local degrees of freedom is computed as a function of the
spacetime dimension and the dimension of the gauge group.
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Three-dimensional pure Chern-Simons theory is well Of particular interest are the Chern-Simons theories with
known to possess higher dimensional generalizations. Thegmuge group SO(2+1,1) or SO(d,2) in 2n+1 dimen-
generalizations are theories im2 1 dimensions constructed sions because they define gravitational theofigk For
from characteristic classes im2 2 dimensions in exactly n=1, one recovers the standard Chern-Simons formulation
the same way as three-dimensional Chern-Simons theory &f Einstein gravity with a cosmological constafg]. For
built out of the four-dimensional characteristic classes. Moren>1 one gets the Einstein-Hilbert action supplemented by
precisely, if F® is the curvature two-formF2=dA® Lovelock termg4] with definite coefficients. These gravita-
+1f3 APAAC associated with the gauge field one-foa®, ~ tional theories admit intriguing black hole solutiof¥ gen-

wheref?_ are the structure constants of the gauge group, an@a/izing ;herz]three_l-(_dimefnsional bl?ckhholes of Réj. " _
Ja,.--a,,, IS & rankn+1, symmetric tensor invariant under One of the striking features of Chern-Simons theory in

I . , three dimensions is the fact that it has no local degrees of
the adjo!nt action of th(_a 92‘;9? group, then one defines thﬁ‘eedom. This is because the equations of motion
Chern-Simons Lagrangiattcg ~ through the formula

L FaA...AF&h=0 (4)
d'%%ré+1:gal"'an+lFalA. ’ ~/\Fan+1_ (1) gaal o
reduce toF?=0 in the three-dimensional case. Thus, the
The three-dimensional case is obtained by taking1, space of solutions of Chern-Simons theory in three dimen-
which yieldsd #2¢=g.,F?/\F®, whereg,, is an invariant sions is the finite-dimensional moduli space of flat connec-
metric on the Lie algebranecessarily proportional to the tions modulo gauge transformatiori®ote that the diffeo-
Killing metric if the Lie algebra is simple mor_phisms lead to no further quotientizing because they
The Chern-Simons actio= [ 725" is invariant under ~ vanish on shel). _ _ _ _
standard gauge transformations Since the higher dimensional Ch_ern-Slmons theor_les are
constructed along the same topological pattern as their three-
SAR=D €. ) dimensional analogue, one may wonder whether they are
" also devoid of local excitations and have only global degrees
S,of freedom. One of the purposes of this Rapid Communica-
tion is to explain why this is not the case. We also count
explicitly the number of local degrees of freedom as a func-
tion of the dimensions of spacetime and of the gauge group.
3) It turns out that the crucial ingredient that controls the whole
analysis is the invariant tensgg, .5, ..

Indeed, these symmetries differ from the Lie derivative only We start the discussion with the five-dimensional case
by a gauge transformation and are often called improvedn=2) and anN-dimensional Abelian groupG=U(1)"].
diffeomorphisms[1]. If the only symmetries of the Chern- This case already contains all the main points that we want to
Simons action are the diffeomorphisi®) and the gauge address and is particularly simple because the invariance
transformationg?2), then we shall say that there is no acci- condition imposes no restriction on the tenggr..., . We
dental gauge symmetry. How this translates into an algebraishall deal with the general situation of an arbitrary gauge
condition ONga, .- .a, ., will be described precisely below.  group afterward.

It is also invariant under spacetime diffeomorphism
S AL=ELA sin.ce‘,%é"sfr1 is a (2n+1)-form. The space-
time diffeomorphisms can also be represented as

a_ _vega
O A= F L,
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Assume first that there is only one single Abelian field.whereK, is given by
The equations of motion impli/AF=0; i.e.,F has at most N
rank 2. In the generic casg,has exactly rank 2in the space Ka=—Gance M FIFF). (6)
of solutions of F/AF=0, the solutionF=0 has measure o i b o
zerg. SinceF is a closed two-form, one may bring it locally The explicit form of the function,(A}’) appearing in Eq(5)
to the canonical formF=dx/A\dx? by a diffeomorphism IS not needed_ here but (_)nly its “exterior” derivative in the
(Darboux theorem for presymplectic forms of rank Phus, ~ SPace of spatial connections, which reads
the quotient space of the solutions of the equations of motion

j i
modulo the gauge transformatiof® and spacetime diffeo- i — ﬂ_ 5_L%: —46ikg, FS,. @
morphisms(3) has locally one and only one solution. This WTSAT A abet ki

implies that the theory has no local degrees of freedom, in ) . . . .
agreement with the findings of Réf]. The equations of motion obtained by varying the action

The case of a single Abelian gauge field is, however, avith respect toA? are given by
poor representative of what happens in the general situation Coep b
and, in that sense, is somewhat misleading. The reason is QA= QDA ®
that, in contrast with the three-dimensional Chern-Simons . ) ) )
theory, we have also used the diffeomorphisms to prove thwhile th_e variation of the action with respectAq yields the
absence of local degrees of freedom. Indeed, these diffegonstraint<;=0. _ . o
morphisms are needed to briffgto its canonical form. But Since the action is linear in the time derivatives’f, the
if there are many Abelian fields, then there are m&rg/to ~ canonically conjugate momenta, are subject to the M
be brought simultaneously to canonical form and this is noprimary constraints
possible with a diffeomorphism. Thus, for man}N¥$1) O
Abelian fields, one expects the existence of local degrees of $a=Pa—13~0. €)
freedom unless the invariant tensgg,. happens to have . . - .
been chosen in some peculiar way that enlarges the numb pese constraints transform in the coadjoint representation of

of gauge symmetries of the thedi@ccidental gauge symme- the Lie alg_ebra becauise thei inhomogeneous terms in the
tries). transformation laws op, andl cangel out.

Atypical example of a theory with accidental gauge sym- It. turns out to be more convenient to replace the con-
metries is obtained by taking all the mixed components oftraintsK, by the equivalent set
Oabc tO Vanish, so that the action is just the direct suniNof G,=K,—D,d! (10)
copies of the action for a single Abelian field. The theory is a— Tta Hiva-
then clearly invariant under diffeomorphisms acting indepen- ' _ a_ .
dently on each copy and has no degrees of freedom. Bu-lihe surface_: defined Wa‘f* ¢i=0is eqUIvaIent_to the
there is no reason to take vanishing mixed components fopurface defined bys,=0, ¢i'=0. The new constraint&,
Jabe. If these mixed components differ from zefand gegerateb the Jauge transformations(2),  e.g.,
cannot be brought to zero by a change of badlsen the A, JsA Gb}:D,iA o
action is not invariant under diffeomorphisms acting inde- 1he Hamiltonian action takes the forf@]
pendently on each gauge field componéfit because the
invariance of the cross terms requires the diffeomorphism I=f f [PEAR—ASG,— UPL]. 11
parameters for each copy to be equal, thus gluing all of them nJz
together in a single symmetry. ) o

In order to substantiate this discussion, let us count prelhe Poisson bracket among the constraints is given by

cisely the number of local degrees of freedom. This number

does not depend on which methddagrangian or Hamil- {da. dbt=%, (12)
tonian one chooses to compute[B]. In our case, it turns i e i

out to be more convenient to follow the Hamiltonian analysis {ba.Go}=fapdbe. (13
[9]. To that end we shall assume that the spacetime manifold

M has the topologyRx 3, where?, is a four-dimensional {Ga,Gp}=f2rGe, (14)

manifold. We then decompose the spacetime gauge field one- )

form A? as A2dx“=A3dt+A2dx where the coordinate whgrefgb .are_the structure constants of the Lie algeb'ra,
FUNS OVerR arfd thex' are coordinates oB. Although there which vanish in the Abelian case that we are considering
is no spacetime metric to give any meaning to expression8W: It follows from the const_ramt algebra. t_hat the.re are no
such as timelike or spacelike, we will call time the coordi- further constraints. The consistency conditi@g=0 is au-
natet and we will say that is a spacelike section as short- tomatically satisfied becausg, is first class while the other

hand expressions. consistency equatiog, = uP=0 will just restrict some
It is easy to see that the Chern-Simons action dependsf the Lagrange muItipIierab.
linearly on the time derivative oA?, Equations(13) and(14) reflect that the constraints, are

the generators of the gauge transformations and that the con-
straints ¢, transform in the coadjoint representation. This
|:f f [l;(Af’)A?—ASKa], (5) means, in particular, that th&,'s are first class, as men-
nJs tioned above.
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The nature of the constraim‘.$;1 is determined by the gebraic conditions enforce inequalities. Therefore, to achieve
eigenvalues of the matriR!), . It turns out that the matrix @ lower rank, some extra conditions would have to be satis-
QU is not invertible on the constraint surfaiig=0. Indeed, fied and this would pug,p. on a surface of lower dimen-
using some simple combinatorial identities, one can provéionality in the space of the invariant tensors.

thatK, given in Eq.(6) andQl, satisfy the relation The physical meaning of the above algebraic conditions is
a straightforward. They simply express that the gauge transfor-
ngFbj: 5kKa- (15) mations(2) and the spatial diffeomorphisni3) are indepen-

dent and that there are no other first-class constraints among

. . . i i )
This equation shows that, on the constraint surfige-0, N ¢a besidesH; . _
the matrix QJ, has four null eigenvectorSUQ)f’zFEj, In order to illustrate these points and to show that the

(k=1 ). The corresponding four first-class con- genericality condition is not self-contradictory and can be
strain'Es. .n.a;melny actually satisfied, let us work out a simple example. Take a
' ' nondiagonaly . of the form
=F2 . .
HI_F'J ar (16) gall:O! Ja'p'1=0a'p’» |nVert|b|e, (17)
generate the spatial diffeomorphisrt®. They satisfy the \here a’,b’,...=23,... N. Then, the constraints

spatial diffeomorphism algebra, up to gauge transformationﬁ,( —0 are solved by takindff"?'=0 andFL arbitrary. The
The presence of these constraints is of course not a surprisé* X " '

because the Chern-Simons action is invariant under diI"feo':n""tr'XQgID has the tensor product form
morphisms for any choice of the invariant tensgp,.

One could also expect the presence of another first-class
constraint, namely, the generator of timelike diffeomor- . . .
phisms. However,yas we gshall see below, this symmetry i nd is thus of rank 44—1) prolvlded thafj; is taken to be
not independent from the other ones and hence its generatbVertile. Tcegnvert_'b'“f(y ofFjj also ensures that the only
is a combination of the first-class constraifig andH; . solution of £ ;=0 is £"=0. Therefore, we can conclude

We now examine whether the first-class constrafgs ~ that the invariant tensaga,e given in Eq.(17) is generic.
and H; are independent and constitute a complete set. Thidlso, this example shows the stratification of phase space.
depends on the properties of the invariant termc and, Wh|le the SO|uti0n that we haVe diSCUSSBﬂith det(Fﬁ)
for a definite choice ofy,,., it also depends on the phase #0] is generic, solutions of the same form but with
space location of the system. This is due to the fact that théet(F;)=0 belong to one of these lower dimensional non-
constraint surface of the Chern-Simons theory is stratifie@eneric phase space regions.
into phase space regions where the md‘llé{) has different Thus, for generic theories, the only first-class constraints
ranks. are G,=0 andH;=0, which shows that the generator of

We will say that an invariant tensay,,. is genericif and  timelike diffeomorphisms is not independent fro@), and
only if it satisfies the following condition: There exist solu- Hi. This may be verified explicitly by writing the action of a
tions F{} of the constraintK,=0 such that(i) the matrix  timelike diffeomorphism parametrized ky = (£°,0) onA?

Fp, (with b,j as row index andk as column indexhas maxi- as[see Eq(3)],

mum rank 4, so that the only solution gfFp;=0 is £&=0
and therefore the four null eigenvectorsvkxf’=FEj,
(k=1,...,4) are linearly independent, and(i) the
(4N) X (4N) matrix QJ, has the maximum rank compatible
with (i), namely, N —4; in other words, it has no other null
eigenvectors besides))=Fp;, (k=1,...,4).

We will also say that the solutiori"sﬁ of the constraints
Ka=0 that allow for thig condition to be satisfied age- S A= I = (20)
neric. The reason for this name comes from the following
observation. For a given genefig,., a solution satisfying which is an improved spatial diffeomorphism with parameter
both conditiong(i) and (i) will still satisfy them upon small ¢,
perturbations since maximum rank conditions correspond to \We can now count the number of local degrees of free-
inequalities and define open regions. Conversely, a solutiodom in the generic case. We havex2N canonical vari-
not satisfying condition§i) or (ii), i.e., located on the surface ables @2,pl), N first-class constraint&, associated with
where lower ranks are achievédefined by equations ex- the gauge invariance, four first-class constraidtsassoci-
pressing that some nontrivial determinants Va))ls\hll fail ated with the (Spatia} diﬁeomorphism invarianCE, and

to remain on that surface upon generic perturbations consisgN —4 second-class constraintie remainingcﬁg). Hence,
tent with the constraints. Nongeneric solutions of the conyye pave

straint equations are also of physical interest but will not be
considered herésee Ref[10] for a more complete analysis 1[8N—2(N+4)—(4N—4)]=2N—-2—N (21)
The genericality condition represents the general case in
the sense that it defines an open region in the space of tHecal degrees of freedom. The formula does not apply to
invariant tensors. Indeed, as we have pointed out, these d=1 because the spatial diffeomorphisms are not indepen-

=0, QU =g, eNFY, (18)

5§Aia: fo iao- (19

Now, the equations of motio(B) are_ngng:O. Since the
only zero eigenvectors of the matifx}), areFEj , there must
exist someg* such thatFj,=¢*Fj,.. Inserting this result in
Eg. (19) we obtain



R596 MAXIMO BAN ADOS, LUIS J. GARAY, AND MARC HENNEAUX 53

dent in that case, as can be checked directly on the canonicak2 andN=2. Again, one may also verify that the generi-
form F=dx!/\dx?. From(21) we see that, foN=2, there  cality condition is not self-contradictory by exhibiting invari-
are no degrees of freedom. This happens because one daatt tensors that satisfy it. For instance, one may take a direct
not use all the diffeomorphism invariance to bring the firstgeneralization of Eq(17). The complete analysis, where the
F! to a canonical form. One may then use the residual difexplicit isolation of the second-class constraints is performed
feomorphism invariance to bring the second field strengtrand the Dirac brackets is computed, will be reported else-
F2 to a canonical form also. However, foi>2, there are  where[10]. B
degrees of freedom. When the invariant tensay,, ..., ,, is not genericQ},

The analysis has been performed so far in the Abelian s further zero eigenvalues and thus, there are further gauge
case. In the non-Abelian case, the analysis proceeds simiymmetries. This implies that the number of degrees of free-
larly. The above formulas have been actually written in suchyom is smaller than in the generic case and may even vanish.
a way that they remain true in the non-Abelian case. Thexg \we mentioned above, an extreme example is giveil by
only difference is that the invariance condition now StronQWUncoupled Abelian gauge fields, where the extra gauge sym-

restricts the possiblgasc. So one may fear that there could metries are diffeomorphisms acting independently on each
be a conflict between the invariance condition and the gemdividual copy.

nericality condition. This is not the case and we have verified o conclude, we have shown that higher dimensional

explicitly that the three-index invariant tensor of $)(  chern-Simons theories, even though constructed along the
(2<p=<6) is generic.. Likgwise_the gravitational Chem- same topological pattern as int2l dimensions, do have
Simons theories in five dimensions are also generic anfhcal degrees of freedom provided that the invariant tensor
therefore do carry local degrees of freeddinis was antici-  that enters the action satisfies an appropriate genericality
pated in quite a different way by Chamseddine who analyzegdondition. This condition implies that there are no accidental
perturbations around a nontrivial backgrouji). gauge symmetries, so that the number of gauge symmetries
What has been done in five dl_menS|ons can pe repeated Brows more slowly with the dimension of the gauge group
higher (odd dimensions. Provided the invariant tensorthan the number of dynamical variables. This result cannot
Ja,..-a,,, Satisfies a genericality condition that is the pe anticipated by analyzing the case of a single Abelian field,
straightforward generalization of the one appropriate to fivavhich is not representative of the general case.

dimensions, one finds that the canonical formulation of We are arateful to Claudio Teitelboim and Jorae Zanelli
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