Resonancia de spin electrónico RSE (Fiz0311)

From Uv
(Difference between revisions)
Jump to: navigation, search
Line 40: Line 40:
 
:<center><math>\vec{\mu_J} = -g_J \cdot \frac{\mu_B}{\hbar} \cdot \vec{J} \qquad\qquad\qquad (1)</math></center>
 
:<center><math>\vec{\mu_J} = -g_J \cdot \frac{\mu_B}{\hbar} \cdot \vec{J} \qquad\qquad\qquad (1)</math></center>
   
donde <math>\vec{\mu_B} =\frac{\hbar}{2} \cdot \frac{e}{m_e} = 5,788 \cdot 10^{-5}eV/T</math> es el ''magnetón de Bohr''
+
donde:
  +
  +
- <math>\vec{\mu_B} =\frac{\hbar}{2} \cdot \frac{e}{m_e} = 5,788 \cdot 10^{-5}eV/T</math> es el ''magnetón de Bohr''
  +
  +
- <math>g_J</math> ''factor de Landé''
  +
  +
- <math>\hbar = \frac{h}{2 \pi}</math>, donde <math>h</math> es la ''constante de Planck''
  +
  +
- <math>e</math> y <math>m_e</math> la carga y masa del electrón respectivamente.
  +
  +
  +
En un campo magnético <math>\vec{B_0}</math>, el momento magnético <math>\vec{\mu_J}</math> adquiere la energía potencial
  +
  +
:<center><math>E = - \vec{\mu_J} \cdot \vec{B_0} \qquad\qquad\qquad (2)</math></center>

Revision as of 18:36, 25 October 2011

Contents

Resonancia de spin electrónico RSE (Fiz0311)

Objetivo

- Determinación del campo de resonancia magnética LaTeX: B_0 en función de la frecuencia de resonancia elegida LaTeX: \nu.

- Determinación del factor LaTeX: g del DPPH.

- Determinación del ancho de línea LaTeX: \delta B_0 de la señal de resonancia.


Equipamiento

- 1 aparato básico para RSE

- 1 unidad de operación para RSE

- 1 par de bobinas de Helmholtz

- 1 osciloscopio de dos canales

- 2 cables para mediciones BNC/4 mm

- 1 amperímetro

- 3 bases

- Cables


Introducción

Desde su descubrimiento por E. K. Zavoisky (1945), la resonancia de spin electrónico (RSE) se transformó en un importante método de investigación de estructuras moleculares y cristalinas, de reacciones químicas y otras problemáticas de la física, la química, la biología y la medicina. Se basa en la absorción de radiación electromagnética de alta frecuencia por parte de sustancias paramagnéticas en presencia de un campo magnético externo en el cual los estados de spin de los electrones se desdoblan.

La resonancia de spin electrónico está limitada a sustancias paramagnéticas ya que en ellas los impulsos angulares orbitales y los spins de los electrones se suman en un impulso angular total distinto de cero. Son particularmente adecuadas, por ejemplo, las uniones en que los átomos no tienen completas sus órbitas internas (metales de transición, tierras raras), las moléculas orgánicas (radicales libres) que contienen electrones no apareados, o los cristales con huecos en su estructura reticular en un estado paramagnético.

El impulso angular total LaTeX: \vec{J} está relacionado con el momento magnético

LaTeX: \vec{\mu_J} = -g_J \cdot \frac{\mu_B}{\hbar} \cdot \vec{J} \qquad\qquad\qquad (1)

donde:

- LaTeX: \vec{\mu_B} =\frac{\hbar}{2} \cdot \frac{e}{m_e} = 5,788 \cdot 10^{-5}eV/T es el magnetón de Bohr

- LaTeX: g_J factor de Landé

- LaTeX: \hbar = \frac{h}{2 \pi}, donde LaTeX: h es la constante de Planck

- LaTeX: e y LaTeX: m_e la carga y masa del electrón respectivamente.


En un campo magnético LaTeX: \vec{B_0}, el momento magnético LaTeX: \vec{\mu_J} adquiere la energía potencial

LaTeX: E = - \vec{\mu_J} \cdot \vec{B_0} \qquad\qquad\qquad (2)
Personal tools